
Assembly & Shortest Common Superstring
Ben Langmead

Department of Computer Science

Please sign guestbook (www.langmead-lab.org/teaching-materials)
to tell me briefly how you are using the slides. For original Keynote
files, email me (ben.langmead@gmail.com).

http://www.langmead-lab.org/teaching-materials
mailto:ben.langmead@gmail.com

Input DNA

Reads Reference genome

+

Assembly

X
How do we assemble
puzzle without the
benefit of knowing
what the finished
product should look
like?

(That's what the
Human Genome
Project had to do!)

De novo shotgun assembly

Assembly

Whole-genome “shotgun” sequencing first copies the input DNA:

Input: GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

Copy: GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

Fragment: GGCGTCTA TATCTCGG CTCTAGGCCCTC ATTTTTT
GGC GTCTATAT CTCGGCTCTAGGCCCTCA TTTTTT
GGCGTC TATATCT CGGCTCTAGGCCCT CATTTTTT
GGCGTCTAT ATCTCGGCTCTAG GCCCTCA TTTTTT

Then fragments it:

“Shotgun” refers to the random fragmentation of the whole
genome; like it was fired from a shotgun

Assembly: Human Genome Project debate

Weber, James L., and Eugene W. Myers. "Human whole-genome
shotgun sequencing." Genome Research 7.5 (1997): 401-409.

Assembly: Human Genome Project debate

Weber, James L., and Eugene W. Myers. "Human whole-genome
shotgun sequencing." Genome Research 7.5 (1997): 401-409.

Assembly: Human Genome Project debate

Green, Philip. "Against a whole-genome shotgun."
Genome Research 7.5 (1997): 410-417.

Assembly: Human Genome Project debate

Green, Philip. "Against a whole-genome shotgun."
Genome Research 7.5 (1997): 410-417.

Assembly

Reconstruct this
From
these

GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

 CTAGGCCCTCAATTTTT
 CTCTAGGCCCTCAATTTTT
 GGCTCTAGGCCCTCATTTTTT
 CTCGGCTCTAGCCCCTCATTTT
 TATCTCGACTCTAGGCCCTCA
 TATCTCGACTCTAGGCC
 TCTATATCTCGGCTCTAGG
GGCGTCTATATCTCG
GGCGTCGATATCT
GGCGTCTATATCT

Assembly

Reconstruct this
From
these

???????????????????????????????????

CTAGGCCCTCAATTTTT
GGCGTCTATATCT
CTCTAGGCCCTCAATTTTT
TCTATATCTCGGCTCTAGG
GGCTCTAGGCCCTCATTTTTT
CTCGGCTCTAGCCCCTCATTTT
TATCTCGACTCTAGGCCCTCA
GGCGTCGATATCT
TATCTCGACTCTAGGCC
GGCGTCTATATCTCG

GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

 CTAGGCCCTCAATTTTT
 CTCTAGGCCCTCAATTTTT
 GGCTCTAGGCCCTCATTTTTT
 CTCGGCTCTAGCCCCTCATTTT
 TATCTCGACTCTAGGCCCTCA
 TATCTCGACTCTAGGCC
 TCTATATCTCGGCTCTAGG
GGCGTCTATATCTCG
GGCGTCGATATCT
GGCGTCTATATCT

Coverage = 5

Coverage

GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

 CTAGGCCCTCAATTTTT
 CTCTAGGCCCTCAATTTTT
 GGCTCTAGGCCCTCATTTTTT
 CTCGGCTCTAGCCCCTCATTTT
 TATCTCGACTCTAGGCCCTCA
 TATCTCGACTCTAGGCC
 TCTATATCTCGGCTCTAGG
GGCGTCTATATCTCG
GGCGTCGATATCT
GGCGTCTATATCT

Coverage = 5

Coverage

GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

 CTAGGCCCTCAATTTTT
 CTCTAGGCCCTCAATTTTT
 GGCTCTAGGCCCTCATTTTTT
 CTCGGCTCTAGCCCCTCATTTT
 TATCTCGACTCTAGGCCCTCA
 TATCTCGACTCTAGGCC
 TCTATATCTCGGCTCTAGG
GGCGTCTATATCTCG
GGCGTCGATATCT
GGCGTCTATATCT 35 bases

177 bases

Average coverage = 177 / 35 ≈ 5-fold

 TCTATATCTCGGCTCTAGG

 TATCTCGACTCTAGGCC

 TCTATATCTCGGCTCTAGG
 ||||||| |||||||
 TATCTCGACTCTAGGCC

First law of assembly

If a suffix of read A is similar to a prefix of read B...

...then A and B might overlap in the genome

 TCTATATCTCGGCTCTAGG
 ||||||| |||||||
 TATCTCGACTCTAGGCC

 TCTATATCTCGGCTCTAGG
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
 TATCTCGACTCTAGGCC

 TCTATATCTCGGCTCTAGG
 ||||||| |||||||
 TATCTCGACTCTAGGCC

Why the differences?

1. Sequencing errors
2. Ploidy: e.g. humans have 2 copies of each

chromosome, and copies can differ

Second law of assembly

More coverage leads to more and longer overlaps

GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

 CTAGGCCCTCAATTTTT
 CTCGGCTCTAGCCCCTCATTTT
 TCTATATCTCGGCTCTAGG
GGCGTCGATATCT

 CTAGGCCCTCAATTTTT
 GGCTCTAGGCCCTCATTTTTT
 CTCGGCTCTAGCCCCTCATTTT
 TATCTCGACTCTAGGCCCTCA
 TCTATATCTCGGCTCTAGG
GGCGTCTATATCTCG
GGCGTCTATATCT

less coverage

more coverage

 TCTATATCTCGGCTCTAGG
 ||||||| |||||||
 TATCTCGACTCTAGGCC

 TCTATATCTCGGCTCTAGG
 ||||||| |||||||
 TATCTCGACTCTAGGCC

 TATCTCGACTCTAGGCC
 |||| |||||| ||
 CTCGGCTCTAGCCCCTCAT

Directed graph

PoloniusHamlet

Node
Edge

Directed graph

Polonius

Ophelia

Laertes

Hamlet

Gertrude
King

Hamlet

Claudius

Overlap graph

Each node is a read

Draw edge A -> B when suffix of A overlaps prefix of B

CTCGGCTCTAGCCCCTCATTTT

CTCGGCTCTAGCCCCTCATTTT

GGCTCTAGGCCCTCATTTTTT

Overlap graph

Nodes: all 6-mers from GTACGTACGAT

Edges: overlaps of length ≥4

TACGAT

ACGTAC

GTACGT

4

CGTACG
5

GTACGA

4

TACGTA
54 4

5

4

4

5

5

5

Overlap graph

Nodes: all 6-mers from GTACGTACGAT

Edges: overlaps of length ≥4

TACGAT

ACGTAC

GTACGT

4

CGTACG
5

GTACGA

4

TACGTA
54 4

5

4

4

5

5

5

Shortest common superstring

Given set of strings S, find SCS(S): shortest string
containing the strings in S as substrings

BAA AAB BBA ABA ABB BBB AAA BABS:

BAAAABBBAABAABBBBBAAABABConcat(S):
24

SCS(S): AAABBBABAA
10

TACGAT

ACGTAC

GTACGT

4

CGTACG
5

GTACGA

4

TACGTA
54 4

5

4

4

5

5

5

>>> scs(['GTACGT', 'TACGTA', 'ACGTAC',
 'CGTACG', 'GTACGA', 'TACGAT'])
'GTACGTACGAT'

Reads: all 6-mers from GTACGTACGAT

Shortest common superstring

NP-complete: no efficient algorithms for large inputs

Idea: pick order for strings in S and construct superstring

AAA AAB ABA ABB BAA BAB BBA BBBorder 1:

AAA

AAA AAB ABA ABB BAA BAB BBA BBBorder 1:

AAAB

Idea: pick order for strings in S and construct superstring

AAA AAB ABA ABB BAA BAB BBA BBBorder 1:

AAABA

Idea: pick order for strings in S and construct superstring

AAA AAB ABA ABB BAA BAB BBA BBBorder 1:

AAABABB

Idea: pick order for strings in S and construct superstring

AAA AAB ABA ABB BAA BAB BBA BBBorder 1:

AAABABBAABABBABBB

Idea: pick order for strings in S and construct superstring

superstring 1

AAA AAB ABA ABB BAA BAB BBA BBBorder 1:

AAABABBAABABBABBB

Idea: pick order for strings in S and construct superstring

AAA AAB ABA BAB ABB BBB BAA BBAorder 2:

AAABABBBAABBA

superstring 1

superstring 2

Try all possible orderings and pick shortest superstring

If S contains n strings, n ! (n factorial) orderings possible

AAA AAB ABA ABB BAA BAB BBA BBBorder 1:

AAABABBAABABBABBB

AAA AAB ABA BAB ABB BBB BAA BBAorder 2:

AAABABBBAABBA

superstring 1

superstring 2

If S contains n strings, n ! (n factorial) orderings possible

Greedy shortest common superstring

AAB

ABB

BBABBB

AAA

2

111
2

1

2

2 1

1
2

Greedy shortest common superstring

AAB

ABB

BBABBB

AAA

2

111
2

1

2

2 1

1
2

Greedy shortest common superstring

ABB

BBABBB

AAAB 2

1
1 1

2

2 1

2

Greedy shortest common superstring

ABB

BBABBB

AAAB 2

1
1 1

2

2 1

2

Greedy shortest common superstring

BBAABBB

AAAB

2
1

1

2

1

Greedy shortest common superstring

BBAABBB

AAAB

2
1

1

2

1

Greedy shortest common superstring

ABBBA

AAAB

2
1

Greedy shortest common superstring

ABBBA

AAAB

2
1

Greedy shortest common superstring

AAABBBA superstring, length=7

Shortest common superstring: greedy

Greedy-SCS: in each round, merge pair of strings with maximal
overlap. Stop when there’s 1 string left. l = minimum overlap.

 AAA AAB ABB BBB BBA
Input strings

Algorithm in action (l = 1):

AAB

ABB

BBABBB

AAA

2

111
2

1

2

2 1

1
2

Shortest common superstring: greedy

Greedy-SCS: in each round, merge pair of strings with maximal
overlap. Stop when there’s 1 string left. l = minimum overlap.

Input strings

Algorithm in action (l = 1):

AAB

ABB

BBABBB

AAA

2

111
2

1

2

2 1

1
2

 AAA AAB ABB BBB BBA
 AAA AAB ABB BBB BBA

Shortest common superstring: greedy

Greedy-SCS: in each round, merge pair of strings with maximal
overlap. Stop when there’s 1 string left. l = minimum overlap.

Input strings

Algorithm in action (l = 1):

ABB

BBABBB

AAAB

11
1

2

2 1

2
2

 AAA AAB ABB BBB BBA
 AAA AAB ABB BBB BBA
 AAAB ABB BBB BBA

Shortest common superstring: greedy

Greedy-SCS: in each round, merge pair of strings with maximal
overlap. Stop when there’s 1 string left. l = minimum overlap.

Input strings

Algorithm in action (l = 1):

ABB

BBABBB

AAAB

11
1

2

2 1

2
2

 AAA AAB ABB BBB BBA
 AAA AAB ABB BBB BBA
 AAAB ABB BBB BBA

Shortest common superstring: greedy

Greedy-SCS: in each round, merge pair of strings with maximal
overlap. Stop when there’s 1 string left. l = minimum overlap.

Input strings

Algorithm in action (l = 1):

ABB

BBBA

AAAB

1

2

2

 AAA AAB ABB BBB BBA
 AAA AAB ABB BBB BBA
 AAAB ABB BBB BBA
 AAAB BBBA ABB

11

Shortest common superstring: greedy

Greedy-SCS: in each round, merge pair of strings with maximal
overlap. Stop when there’s 1 string left. l = minimum overlap.

Input strings

Algorithm in action (l = 1):

ABB

BBBA

AAAB

1

2

2

 AAA AAB ABB BBB BBA
 AAA AAB ABB BBB BBA
 AAAB ABB BBB BBA
 AAAB BBBA ABB

11

Shortest common superstring: greedy

Greedy-SCS: in each round, merge pair of strings with maximal
overlap. Stop when there’s 1 string left. l = minimum overlap.

Input strings

Algorithm in action (l = 1):

BBBA

AAABB

2

 AAA AAB ABB BBB BBA
 AAA AAB ABB BBB BBA
 AAAB ABB BBB BBA
 AAAB BBBA ABB
 AAABB BBBA

1

Shortest common superstring: greedy

Greedy-SCS: in each round, merge pair of strings with maximal
overlap. Stop when there’s 1 string left. l = minimum overlap.

Input strings

Algorithm in action (l = 1):

 AAA AAB ABB BBB BBA
 AAA AAB ABB BBB BBA
 AAAB ABB BBB BBA
 AAAB BBBA ABB
 AAABB BBBA
 AAABBBA

That’s the SCS

AAABBBA

Greedy shortest common superstring

AAA AAB ABB BBA BBB

AAAB ABB BBA BBB

Greedy shortest common superstring

AAA AAB ABB BBA BBB

AAAB ABB BBA BBB

AAAB ABBA BBB

Greedy shortest common superstring

AAA AAB ABB BBA BBB

AAAB ABB BBA BBB

AAAB ABBA BBB

AAABBA BBB

Greedy shortest common superstring

AAA AAB ABB BBA BBB

AAAB ABB BBA BBB

AAAB ABBA BBB

AAABBA BBB

AAABBABBB superstring, length=9

Greedy shortest common superstring

AAA AAB ABB BBA BBB

AAAB ABB BBA BBB

AAAB ABBA BBB

AAABBA BBB

AAABBABBB superstring, length=9

AAABBBA superstring, length=7

Greedy answer isn't necessarily optimal

Shortest common superstring: greedy

Greedy-SCS assembling all substrings of length 6 from:
a_long_long_long_time. l = 3.

 ng_lon _long_ a_long long_l ong_ti ong_lo long_t g_long g_time ng_tim
 ng_time ng_lon _long_ a_long long_l ong_ti ong_lo long_t g_long
 ng_time g_long_ ng_lon a_long long_l ong_ti ong_lo long_t
 ng_time long_ti g_long_ ng_lon a_long long_l ong_lo
 ng_time ong_lon long_ti g_long_ a_long long_l
 ong_lon long_time g_long_ a_long long_l
 long_lon long_time g_long_ a_long
 long_lon g_long_time a_long
 long_long_time a_long
 a_long_long_time

Foiled by repeat!

Shortest common superstring: greedy

Same example, but increased the substring length from 6 to 8

 long_lon ng_long_ _long_lo g_long_t ong_long g_long_l ong_time a_long_l _long_ti long_tim
 long_time long_lon ng_long_ _long_lo g_long_t ong_long g_long_l a_long_l _long_ti
 _long_time long_lon ng_long_ _long_lo g_long_t ong_long g_long_l a_long_l
 _long_time a_long_lo long_lon ng_long_ g_long_t ong_long g_long_l
 _long_time ong_long_ a_long_lo long_lon g_long_t g_long_l
 g_long_time ong_long_ a_long_lo long_lon g_long_l
 g_long_time ong_long_ a_long_lon g_long_l
 g_long_time ong_long_l a_long_lon
 g_long_time a_long_long_l
 a_long_long_long_time
 a_long_long_long_time

Got the whole thing: a_long_long_long_time

Shortest common superstring: greedy

Why are substrings of length 8 long enough for Greedy-SCS to figure
out there are 3 copies of long?

a_long_long_long_time

One length-8 substring spans all three longs

g_long_l

Third law of assembly

Repeats make assembly difficult; whether we can
assemble without mistakes depends on length of reads
and repetitive patterns in genome

a_long_long_long_time

a_long_long_time

Collapsing a tandem repeat:

Spurious rearrangement:

Repeats foil assembly

Portion of overlap graph involving repeat family A

As are longer than
read length

A

Lots of overlaps
among A reads

Even if we avoid collapsing copies of A, we can’t know which paths
in correspond to which paths out

L1

L2

L3

L4

R1

R2

R3

R4

L1

L2

L3

L4

R1

R2

R3

R4

St
re

tc
he

s
of

ge

no
m

e
Re

ad
s

RepetitiveUnique Unique

