Assembly & Shortest Common Superstring

Ben Langmead

=X
@
JOHNS HOPKINS

WHITING SCHOOL
of ENGINEERING

Department of Computer Science

Please sign guestbook (www.langmead-lab.org/teaching-materials)
|@ ® | to tell me briefly how you are using the slides. For original Keynote

files, email me (ben.langmead@gmail.com).


http://www.langmead-lab.org/teaching-materials
mailto:ben.langmead@gmail.com

Assembly

Input DNA =

How do we assemble
puzzle without the
benefit of knowing
what the finished
product should look
like?

(That's what the
Human Genome
Project had to do!)




De novo shotgun assembly

o (.Er




Assembly

Whole-genome “shotgun” sequencing first copies the input DNA:

Input: GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

Copy: GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

Then fragments it:

Fragment: GGCGTCTA TATCTCGG CTCTAGGCCCTC ATTTTTT
GGC GTCTATAT CTCGGCTCTAGGCCCTCA TTTTTT
GGCGTC TATATCT CGGCTCTAGGCCCT CATTTTTT
GGCGTCTAT ATCTCGGCTCTAG GCCCTCA TTTTTT

“Shotgun”refers to the random fragmentation of the whole
genome; like it was fired from a shotgun



Assembly: Human Genome Project debate

PERSPECTIVE

Human Whole-Genome Shotgun Sequencing

James L. Weber'-® and Eugene W. Myers’

'Center for Medical Genetics, Marshfield Medical Research Foundation, Marshfield, Wisconsin 54449:
’Department of Computer Science, University of Arizona, Tucson, Arizona 85721

Large-scale sequencing of the human genome is
now under way (Boguski et al. 1996; Marshall and
Pennisi 1996). Although at the beginning of the Ge-
nome Project, many doubted the scientific value of
sequencing the entire human genome, these doubts
have evaporated almost entirely (Gibbs 1995; Olson
1995). Primary reasons for generating the human
genomic sequence are listed in Table 1.

The approach being taken for human genomic
sequencing is the same as that used for the Saccha-
romyces cerevisiae and Caenorhabditis elegans ge-
nomes, namely construction of overlapping arrays
of large insert Escherichia coli clones, followed by
complete sequencing of these clones one at a time.

would be deposited in a common, public database,
and only a few or possibly even one large informat-
ics group would assay the primary task of sequence
asscmbly. Following initial assembly, gaps in sc-
quence coverage would need to be filled and uncer-
tainties in assembly would need to be resolved.
Sequencing from both ends of relatively long
insert subclones is an essential feature of the plan.
Initially, Edwards and colleagues (1990) and, more
recently, several other groups (Chen et al. 1993;
Smith et al. 1994; Kupfer et al. 1995; Roach et al.
1995; Nurminsky and Hartl 1996) recognized that
sequence information from both ends of relatively
long inserts dramatically improves the efficiency of

Weber, James L., and Eugene W. Myers. "Human whole-genome
shotgun sequencing." Genome Research 7.5 (1997): 401-4009.



Assembly: Human Genome Project debate

Although a large amount of computing power
would be required to perform the sequence similar-
1ty searches necessary for assembly, such power 1s
already available. Using conservative and sensitive
overlap detection algorithms, it would currently be
possible to span sequence-tagged sites (STSs) spaced
at 100 kb at a rate of at least one STS pair per day per
100 mips (million instructions per second) worksta-
tion. With a cluster of 100 such workstations the
assembly of the entire human genome would take
300 days. By using less sensitive, but faster, overlap
detection software, this time could be reduced by
nearly a factor of 10. Note also that the power of
computer processors has doubled every 18 months
for many years, and this trend is likely to continue
(Patterson 1995). If contemplated machines such as
the 3-teraflop supercomputer planned in 1998 for
Lawrence Livermore National Laboratory (Macil-
wain 1996) were recruited to the task of assembly,
then the human genome could be assembled, in
principle, in 4 min.

Weber, James L., and Eugene W. Myers. "Human whole-genome
shotgun sequencing." Genome Research 7.5 (1997): 401-4009.



Assembly: Human Genome Project debate

PERSPECTIVE

Against a Whole-Genome Shotgun
Philip Green’

Department of Molecular Biotechnology, University of Washington, Seattle, Washington 98195

The human genome project is entering its decisive
final phase, in which the genome sequence will be
determined in large-scale efforts in multiple labora-
tories worldwide. A number of sequencing groups
are in the process of scaling up their throughput;
over the next few years they will need to attain a
collective capacity approaching half a gigabase per
year to complete the 3-Gb genome sequence by the
target date of 2005. At present, all contributing
groups are using a clone-by-clone approach, in
which mapped bacterial clones (typically 40-400 kb
in size) from known chromosomal locations are se-
quenced to completion. Among other advantages,
this permits a variety of alternative sequencing
strategies and methods to be explored indepen-

MIT Center for Genome Research, http://www-
genome.wi.mit.edu], with several intensively
mapped chromosomes already exceeding it (Naga-
raja et al. 1997, Bouffard et al. 1997), and BACs av-
erage 130 kb or more in size in current libraries (Kim
et al. 1996), this STS density should be adequate to
obtain contiguous clone coverage of much of the
genome; most gaps that remain should be closable
by developing new STSs directly from the sequence
adjacent to the gap and rescreening the library.
Restriction digests are performed on the clones
obtained from the screens to determine their sizes
and extent of overlap, and to eliminate anomalous
clones, which generally have fingerprints inconsis-
tent with other clones in the group. Selected clones

Green, Philip. "Against a whole-genome shotgun.”
Genome Research 7.5 (1997): 410-417.



Assembly: Human Genome Project debate

Weber’s and Myers’ argument that the ap-
proach is feasible relies primarily on a greatly over-
simplified computer simulation of the process of se-
quence reconstruction, which depends on incorrect
assumptions about the nature of the genome (e.g.,
that repeats are uniformly distributed) and of se-
quence data and ignores a number of serious tech-
nical obstacles. It needs to be emphasized that what
they have done was not an actual assembly of a
simulated genome sequence; indeed, they could not
do such an assembly, as software adequate to handle
data on the required scale does not exist, nor do we
have adequate knowledge of the sequence charac-
teristics of the genome to permit a realistic simula-
tion. Instead, they have idealized the process of as-
sembly by simulating the locations of clones within

Green, Philip. "Against a whole-genome shotgun.”
Genome Research 7.5 (1997): 410-417.



Assembly

Reconstruct this

GGCG]

GGCGT
GGCGT

TCTAT
CTAT
CGAT
CTAT

> GGCG]T

>>>>>> >

CTATAT

C
C
C
C
TC
C
C
C

cT

GGCT
CGGCT
CGACT
CGACT

'CGGCT

CG

OO O OO0 0O 0O

TAGGCCCTCAATTTTT |
TAGGCCCTCAATTTTT
TAGGCCCTCATTTTTT
TAGCCCCTCATTTT
TAGGCCCTCA
TAGGCC
TAGG

— - - -

TCGGCTCTAGGCCCTCATTTTTT |

From
these



Assembly

CTAGGCCCTCAATTTTT
GGCGTCTATATCT
CTCTAGGCCCTCAATTTTT
TCTATATCTCGGCTCTAGG

e From
| GGCTCTAGGCCCTCATTTTTT
Reconstructthis o T TAGCCCCTCATTTT these

TATCTCGACTCTAGGCCCTCA

GGCGTCGATATCT
TATCTCGACTCTAGGCC

GGCGTCTATATCTCG |
>PPPPPPPPPrPPPPlPPPrPrPPPPPPPPPPPPPPPPPP




Coverage
CTAGGCCCTCAATTTTT

CTCTAGGCCCTCAATTTTT
GGCTCTAGGCCCTCATTTTTT
CTCGGCTCTAGCCCCTCATTTT
TATCTCGACTCTAGGCCCTCA
TATCTCGACTCTAGGCC
TCTATATCTCGGCTCTAGG
GGCGTCTATATCTICG
GGCGTCGATATCT

GGCGTCTATATCT
GGCGTCTATATCTICGGCTCTAGGCCCTCATTITTTT

Coverage =5



Coverage
CTAGGCCCTCAATTTTT

CTCTAGGCCCTCAATTTTT
GGCTCTAGGCCCTCATTTTTT
CTCGGCTCTAGCCCCTCATTTT
TATCTCGACTCTAGGCCCTCA
TATCTCGACTCTAGGCC
TCTATATCTCGGCTCTAGG
GGCGTCTATATCTCG
GGCGTCGATATCT

GGCGTCTATATCT
GGCGTCTATATCTCGGCTCTAGGCCCTCATTITTTT

Coverage =5



CTAGGCCCTCAATTTTT
CTCTAGGCCCTCAATTTTT
GGCTCTAGGCCCTCATTTTTT
CTCGGCTCTAGCCCCTCATTTT
TATCTCGACTCTAGGCCCTCA
TATCTCGACTCTAGGCC
TCTATATCTCGGCTCTAGG
GGCGTCTATATCTCG
GGCGTCGATATCT

GGCGTCTATATCT 35 bases
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

Average coverage = 177 / 35 = 5-fold

177 bases



TCTATATCTCGGCTCTAGG

TATCTCGACTCTAGGCC



TCTATATCTCGGCTCTAGG

TATCTCGACTCTAGGCC



First law of assembly

If a suffix of read A is similar to a prefix of read B...

TCTATATCTCGGCTCTAGG

TATCTCGACTCTAGGCC

..then A and B might overlap in the genome

TCTATATCTCGGCTCTAGG

GGCGTCTATATCTCGGCTCTAGGCCCTCATTTITTI
TATCTCGACTCTAGGCC



TCTATATCTCGGCTCTAGG

TATCTCG?CTCTAGGCC

Why the differences?

1. Sequencing errors

2. Ploidy: e.g. humans have 2 copies of each
chromosome, and copies can differ

P K



Second law of assembly

More coverage leads to more and longer overlaps

CTAGGCCCTCAATTTTT
CTCGGCTCTAGCFCCTCATTTT

TCTATATCTCGGCTCTAGG
GGCGTCGATATCT

GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
CTAGGCCCTCAATTTTT
GGCTCTAGGCCCTCATTTTTT
CTCGGCTCTAGCCCCTCATTTT
TATCTCGACTCTAGGrCCTCA
TCTATATCTCGGCTCTAGG
GGCGTCTATATCTCG
GGCGTCTATATCT more coverage

less coverage




TCTATATCTCGGCTCTAGG

TATCTCGACTCTAGGCC



TCTATATCTCGGCTCTAGG

TATCTCGACTCTAGGCC

TATCTCGACTCTAGGCC

CTCGGCTCTAGCCCCTCAT



Directed graph

Edge

Node



Directed graph




Overlap graph

Each node is a read

[CTCGGCTCTAGCCCCTCATTTT j

Draw edge A -> B when suffix of A overlaps prefix of B

[CTCGGCTCTAGCCCCTCATTTT j

\

[GGCTCTAGGCCCTCATTTTTT j




Overlap graph

Nodes: all 6-mers from GTACGTACGAT
Edges: overlaps of length >4

5

\}?I'ACGT

TACGTA

CGTACG

GTACGA ) &
. TACGAD




Overlap graph

Nodes: all 6-mers from GTACGTACGAT
Edges: overlaps of length >4

GTACGT

GTACGA ) &
. TACGéE:>




Shortest common superstring

Given set of strings S, find SCS(S): shortest string
containing the strings in S as substrings

5: BAA AAB BBA ABA ABB BBB AAA BAB

Concat(S): BAAAABBBAABAABBBBBAAABAB
| 24 |

SCS5(S): AAABBBABAA
| 10 =




Reads: all 6-mers from GTACGTACGAT

5

\}EI'ACGT

TACGTA

CGTACG

GTACGA ) ¢

. TACGéE:)

>>> scs(['GTACGT', 'TACGTA', 'ACGTAC',
'CGTACG', 'GTACGA', 'TACGAT'])

"GTACGTACGAT"




Shortest common superstring

NP-complete: no efficient algorithms for large inputs



ldea: pick order for strings in S and construct superstring

order 1: AAA AAB ABA ABB BAA BAB BBA BBB
AAA




ldea: pick order for strings in S and construct superstring

order 1. AAA AAB ABA ABB BAA BAB BBA BBB
AAAB




ldea: pick order for strings in S and construct superstring

order 1. AAA AAB ABA ABB BAA BAB BBA BBB
AAABA




ldea: pick order for strings in S and construct superstring

order 1. AAA AAB ABA ABB BAA BAB BBA BBB
AAABABB




ldea: pick order for strings in S and construct superstring

order 1: AAA AAB ABA ABB BAA BAB BBA BBB
AAABABBAABABBABBB <«— superstring 1



ldea: pick order for strings in S and construct superstring

order 1: AAA AAB ABA ABB BAA BAB BBA BBB
AAABABBAABABBABBB <«— superstring 1

order2: AAA AAB ABA BAB ABB BBB BAA BBA
AAABABBBAABBA <— superstring 2

Try all possible orderings and pick shortest superstring

If S contains n strings, n! (n factorial) orderings possible



order 1: AAA AAB ABA ABB BAA BAB BBA BBB
AAABABBAABABBABBB <«— superstring 1

order2: AAA AAB ABA BAB ABB BBB BAA BBA
AAABABBBAABBA <— superstring 2

If S contains n strings, n! (n factorial) orderings possible



Greedy shortest common superstring

AAA

BBB

1

AAB
5 2
1 T \\1
1 >
2

2

ABB

BBA

1




Greedy shortest common superstring

AAA

BBB

1

AAB
5 2
1 T \\1
1 >
2

2

ABB

BBA

1




Greedy shortest common superstring

AAAB

A 4

BBB

ABB




Greedy shortest common superstring




Greedy shortest common superstring

AAAB

ABBBlL—2_ SIBBA




Greedy shortest common superstring

AAAB

ABBBL—2—>/BBA




Greedy shortest common superstring

AAAB

ABBBA




Greedy shortest common superstring

AAAB

ABBBA




Greedy shortest common superstring

AAABBBA | «— superstring, length=7




Shortest common superstring: greedy

Greedy-SCS: in each round, merge pair of strings with maximal
overlap. Stop when there’s 1 string left. /= minimum overlap.

Algorithm in action (/ = 1):

ABB

——-Input strings —
AAA AAB ABB BBB BBA AAB
2 2
1 1
AAA 1
2
1 )
BBB 2 BBA




Shortest common superstring: greedy

Greedy-SCS: in each round, merge pair of strings with maximal
overlap. Stop when there’s 1 string left. /= minimum overlap.

Algorithm in action (/ = 1):

——-Input strings — AAB
AAA AAB ABB BBB BBA
AAA AAB ABB BBB BBA

AAA > ABB

BBB 2 3BBA




Shortest common superstring: greedy

Greedy-SCS: in each round, merge pair of strings with maximal
overlap. Stop when there’s 1 string left. /= minimum overlap.

Algorithm in action (/ = 1):

——-Input strings —
AAA AAB ABB BBB BBA
AAA AAB ABB BBB BBA
AAAB ABB BBB BBA

AAAB > ABB

BBB 2




Shortest common superstring: greedy

Greedy-SCS: in each round, merge pair of strings with maximal
overlap. Stop when there’s 1 string left. /= minimum overlap.

Algorithm in action (/ = 1):

——-Input strings —
AAA AAB ABB BBB BBA
AAA AAB ABB BBB BBA
AAAB ABB BBB BBA

AAAB > ABB

BBB 2




Shortest common superstring: greedy

Greedy-SCS: in each round, merge pair of strings with maximal
overlap. Stop when there’s 1 string left. /= minimum overlap.

Algorithm in action (/ = 1):

——-Input strings —
AAA AAB ABB BBB BBA
AAA AAB ABB BBB BBA
AAAB ABB BBB BBA
AAAB BBBA ABB




Shortest common superstring: greedy

Greedy-SCS: in each round, merge pair of strings with maximal
overlap. Stop when there’s 1 string left. /= minimum overlap.

Algorithm in action (/ = 1):

——-Input strings —
AAA AAB ABB BBB BBA
AAA AAB ABB BBB BBA
AAAB ABB BBB BBA
AAAB BBBA ABB




Shortest common superstring: greedy

Greedy-SCS: in each round, merge pair of strings with maximal
overlap. Stop when there’s 1 string left. /= minimum overlap.

Algorithm in action (/ = 1):

——-Input strings —
AAA AAB ABB BBB BBA
AAA AAB ABB BBB BBA
AAAB ABB BBB BBA
AAAB BBBA ABB

AAABB BBBA

AAABB

BBBA




Shortest common superstring: greedy

Greedy-SCS: in each round, merge pair of strings with maximal
overlap. Stop when there’s 1 string left. /= minimum overlap.

Algorithm in action (/ = 1):

——-Input strings —
AAA AAB ABB BBB BBA
AAA AAB ABB BBB BBA
AAAB ABB BBB BBA
AAAB BBBA ABB

AAABB BBBA

AAABBBA AAABBBA

That's the SCS



Greedy shortest common superstring

AAA ‘A/AB ABB BBA BBB
\
AAAB ABB BBA BBB



Greedy shortest common superstring

AAA ‘A/AB ABB BBA BBB
\
AAAB ABB BBA BBB
\ A4
AAAB ABBA BBB



Greedy shortest common superstring

AAA ‘A(AB ABB BBA BBB
\
AAAB ABB BBA BBB
\ A4
AAAB ABBA BBB
\ 24
AAABBA BBB



Greedy shortest common superstring

AAA AA/AB ABB BBA BBB

\
AAAB ABB BBA BBB

\ 24

AAAB ABBA BBB

\ 24
AAABBA BBB

\ '4
AAABBABBB <«— superstring, length=9



Greedy shortest common superstring

AAA AA{AB ABB BBA BBB
\
AAAB ABB BBA BBB
\ A4

AAAB ABBA BBB
\ 24

AAABBA BBB

\ '4
AAABBABBB <«— superstring, length=9

AAABBBA <«— superstring, length=7

Greedy answer isn't necessarily optimal



Shortest common superstring: greedy

Greedy-SCS assembling all substrings of length 6 from:
a_long long long time. [=3.

ng lon long a long long 1 ong ti ong lo long t g long g time ng tim
ng time ng lon long a long long 1 ong ti ong lo long t g long

ng time g long ng lon a _long long 1 ong ti ong lo long t

ng time long ti g long ng lon a long long 1 ong lo

ng time ong lon long ti g long a long long 1

ong lon long time g long a long long 1

long lon long time g long a long

long lon g long time a_long

long long time a_long

a_long long time

t

Foiled by repeat!



Shortest common superstring: greedy

Same example, but increased the substring length from 6 to 8

long lon ng long_ long lo g long t ong long g long 1 ong time a long 1 long ti long tim
long time long lon ng long long lo g long t ong long g long 1 a long 1 long ti
_long time long lon ng long long lo g long t ong long g long 1 a long 1

_long time a_long lo long lon ng long g long t ong long g long 1

~long time ong long a long lo long lon g long t g long 1

g long time ong long a long lo long lon g long 1

g long time ong long a long lon g long 1

g long time ong long 1 a long lon

g long time a_long long 1

a_long long long time

a_long long long time

Got the whole thing: a_long long long time



Shortest common superstring: greedy

Why are substrings of length 8 long enough for Greedy-SCS to figure
out there are 3 copies of long?

a_long long long time

g long 1

One length-8 substring spans all three 1longs



Third law of assembly

Repeats make assembly difficult; whether we can
assemble without mistakes depends on length of reads

and repetitive patterns in genome

Collapsing a tandem repeat: a_long long long time

!

a_long long time

Spurious rearrangement:

.




Repeats foil assembly

Portion of overlap graph involving repeat family A

A
S ¢ L R;
% § 22 Unique W gz As are longer than
20 > read length
g S [y R4

-------------------------------------

Lots of overlaps
among A reads

' EECTTO.
L m——

—//}
L, I

Even if we avoid collapsing copies of A, we can’t know which paths
in correspond to which paths out

Reads
o




