CS 466 Introduction to Bioinformatics Lecture 20

Mohammed El-Kebir
Nov 14, 2018

Course Announcements

Project Proposal due Nov 14th

Hidden Markov Model $\mathcal{M}=(Q, A, \Sigma, E)$

- Set of hidden states Q
- Markov property
- Transition probabilities $A=\left[a_{i j}\right]$ on pairs of states
- Set of emitted symbols Σ
- Emission probabilities $E=\left[e_{i k}\right]$ on state-symbol pairs

Two decisions:

1. What symbol should I emit? [emission probabilities E]
2. What state should I move to next? [transition probabilities A]

Fair Bet Casino

$$
\begin{array}{rl}
Q & =\{F, B\} \\
F & B \\
A & =\left(\begin{array}{cc}
0.9 & 0.1 \\
0.1 & 0.9
\end{array}\right)_{B}^{F} \\
\Sigma & =\{H, T\} \\
H & T \\
E & =\left(\begin{array}{cc}
0.5 & 0.5 \\
0.75 & 0.25
\end{array}\right)_{B}^{F}
\end{array}
$$

Three Questions

Question 1:

What is the most probable path $\boldsymbol{\pi}^{*}$ that generated observations \mathbf{x} ?

Question 2:

What is probability of observations \mathbf{x} generated by any path $\boldsymbol{\pi}$?

Question 3:

What is the probability of observation x_{i} generated by state s ?

Type	Probability	Method	Solution
Joint	$\max _{\boldsymbol{\pi} \in Q^{n}} \operatorname{Pr}(\mathbf{x}, \boldsymbol{\pi})$	Viterbi algorithm	$\operatorname{Pr}\left(\mathbf{x}, \boldsymbol{\pi}^{*}\right)=\max _{s \in Q} v[s, n]$
Marginal	$\operatorname{Pr}(\mathbf{x})$	Forward algorithm, or back- ward algorithm	$\operatorname{Pr}(\mathbf{x})=\sum_{s \in Q} f[s, n]$, $\operatorname{Pr}(\mathbf{x})=\sum_{s \in Q} a_{0, s} \cdot e\left[s, x_{1}\right] \cdot b[s, 1]$
Posterior	$\operatorname{Pr}\left(\pi_{i}=s \mid \mathbf{x}\right)$	Forward algorithm, and backward algorithm	$\hat{\pi}_{i}=\underset{s \in Q}{\arg \max } \frac{f[s, i] \cdot b[s, i]}{\sum_{t \in Q} f[t, n]}$

Table 1: Hidden Markov Models - Three different probabilities

Type	Recurrence
Viterbi	$v[s, i]=\left\{\begin{array}{ll\|}a_{0, s} e_{s, x_{1}}, \\ e_{s, x_{i}} \max _{t \in Q} v[t, i-1] \cdot a_{t, s}, & \text { if } i>1 .\end{array}\right.$
Forward	$f[s, i]= \begin{cases}a_{0, s} e_{s, x_{1}}, & \text { if } i=1, \\ e_{s, x_{i}} \sum_{t \in Q} f[t, i-1] \cdot a_{t, s}, & \text { if } i>1 .\end{cases}$
Backward	$b[s, i]= \begin{cases}1, & \text { if } i=n, \\ \sum_{t \in Q} a_{s, t} \cdot e_{t, x_{i+1}} \cdot b[t, i+1], & \text { if } 1 \leq i<n,\end{cases}$

Table 2: Hidden Markov Models - Three recurrences that each can be computed in $O\left(n|Q|^{2}\right)$ time and $O(n|Q|)$ space.

Viterbi	$1(\mathrm{~T})$	$\mathbf{2 (H)}$	$3(\mathrm{~T})$	$\mathbf{4}(\mathrm{H})$	$5(\mathrm{H})$	$6(\mathrm{H})$	$7(\mathrm{~T})$	$8(\mathrm{H})$	$9(\mathrm{H})$	$10(\mathrm{H})$	$11(\mathrm{~T})$
F											
B											

Forward	1 (T)	2 (H)	3 (T)	4 (H)	5 (H)	6 (H)	7 (T)	8 (H)	9 (H)	10 (H)	11 (T)
F											
B											

Backward	1 (T)	2 (H)	3 (T)	4 (H)	5 (H)	6 (H)	7 (T)	8 (H)	9 (H)	10 (H)	11 (T)
F											
B											

Questions:

1. Compute most likely state path
2. Compute marginal probability
3. Compute posterior decoding
$Q=\{F, B\}$
$A=\left(\begin{array}{ll}0.9 & 0.1 \\ 0.1 & 0.9\end{array}\right)_{B}^{F}$
$\Sigma=\{H, T\}$
$E=\left(\begin{array}{cc}{ }^{H} & T \\ 0.5 & 0.5 \\ 0.75 & 0.25\end{array}\right)_{\text {B }}^{F}$

Type	Recurrence
Viterbi	$v[s, i]= \begin{cases}a_{0, s} e_{s, x_{1}}, \\ e_{s, x_{i}} \max _{t \in Q} v[t, i-1] \cdot a_{t, s}, & \text { if } i>1 .\end{cases}$
Forward	$f[s, i]= \begin{cases}a_{0, s} e_{s, x_{1}}, & \text { if } i=1, \\ e_{s, x_{i}} \sum_{t \in Q} f[t, i-1] \cdot a_{t, s}, & \text { if } i>1 .\end{cases}$
Backward	$b[s, i]= \begin{cases}1, & \text { if } i=n, \\ \sum_{t \in Q} a_{s, t} \cdot e_{t, x_{i+1}} \cdot b[t, i+1], & \text { if } 1 \leq i<n,\end{cases}$

Summary

- Markov property - Current state depends only on previous state
- Hidden Markov Models: states are not given only emitted symbols
- Viterbi algorithm: Find the most likely sequence of states given a set of observations
- Baum-Welch algorithm: EM-algorithm to learn \boldsymbol{A} and \boldsymbol{E} from training set

Reading:

- Jones and Pevzner: Chapters 11.1-11.3
- Lecture notes

