CS 466 Introduction to Bioinformatics Lecture 20

Mohammed El-Kebir

Nov 14, 2018

Course Announcements

Project Proposal due Nov 14th

Hidden Markov Model $\mathcal{M} = (Q, A, \Sigma, E)$

- Set of hidden states Q
 - Markov property
- Transition probabilities $A = [a_{ij}]$ on pairs of states
- Set of *emitted* symbols Σ
- Emission probabilities $E = [e_{ik}]$ on state-symbol pairs

Two decisions:

- 1. What symbol should I emit? [emission probabilities *E*]
- 2. What state should I move to next? [transition probabilities A]

Andrey Markov

Three Questions

Question 1:

What is the most probable path π^* that generated observations x?

Question 2:

What is probability of observations \mathbf{x} generated by any path $\boldsymbol{\pi}$?

Question 3:

What is the probability of observation x_i generated by state s?

Type	Probability	Method	Solution
Joint	$\max_{{m \pi} \in Q^n} \Pr({m x},{m \pi})$	Viterbi algorithm	$\Pr(\mathbf{x}, \boldsymbol{\pi}^*) = \max_{s \in Q} v[s, n]$
Marginal	$\Pr(\mathbf{x})$	Forward algorithm, or back-	$\Pr(\mathbf{x}) = \sum_{s \in Q} f[s, n],$
		ward algorithm	$\Pr(\mathbf{x}) = \sum_{s \in Q} a_{0,s} \cdot e[s, x_1] \cdot b[s, 1]$
Posterior	$\Pr(\pi_i = s \mid \mathbf{x})$	Forward algorithm, and	$\hat{\pi}_i = \underset{s \in Q}{\operatorname{argmax}} \underbrace{\frac{f[s,i] \cdot b[s,i]}{\sum_{t \in Q} f[t,n]}}$
		backward algorithm	$s \in Q$ $\succeq_{t \in Q} f[s, n]$

Table 1: Hidden Markov Models – Three different probabilities

Type	Recurrence					
Viterbi	v[e i] - i	$\begin{cases} a_{0,s}e_{s,x_1}, \\ e_{s,x_i} \max_{t \in Q} v[t, i-1] \cdot a_{t,s}, \\ a_{0,s}e_{s,x_1}, \end{cases}$	if $i = 1$,			
VICEIDI	$\left[\begin{array}{c} v[s, i] - v \end{array} \right]$	$e_{s,x_i} \max_{t \in Q} v[t, i-1] \cdot a_{t,s},$	if $i > 1$.			
Forward	$f[s,i] = \delta$	$\int a_{0,s} e_{s,x_1},$	if i=1,			
rorward		$\begin{cases} a_{0,s}e_{s,x_{1}}, \\ e_{s,x_{i}}\sum_{t\in Q}f[t,i-1]\cdot a_{t,s}, \end{cases}$	if $i > 1$.			
Backward		1,	If $i = n$,			
		$\sum_{t\in Q} a_{s,t} \cdot e_{t,x_{i+1}} \cdot b[t,i+1],$	if $1 \leq i < n$,			

Table 2: Hidden Markov Models – Three recurrences that each can be computed in $O(n|Q|^2)$ time and O(n|Q|) space.

X	= (
	Viterbi	1 (T)	2 (H)	3 (T)	4 (H)	5 (H)	6 (H)	7 (T)	8 (H)	9 (H)	10 (H)	11 (T)
	F											
	В											
	Forward	1 (T)	2 (H)	3 (T)	4 (H)	5 (H)	6 (H)	7 (T)	8 (H)	9 (H)	10 (H)	11 (T)
	F											
	В											
	Backward	1 (T)	2 (H)	3 (T)	4 (H)	5 (H)	6 (H)	7 (T)	8 (H)	9 (H)	10 (H)	11 (T)
	F											
	В											

Questions:

- 1. Compute most likely state path
- 2. Compute marginal probability
- 3. Compute posterior decoding

Type	Recurre	nce	
Viterbi	$v[s,i] = \langle$	$\begin{cases} a_{0,s}e_{s,x_1}, \\ e_{s,x_i}\max_{t\in Q}v[t,i-1]\cdot a_{t,s}, \end{cases}$	if i=1,
		$e_{s,x_i} \max_{t \in Q} v[t, i-1] \cdot a_{t,s},$	if $i > 1$.
Forward	$\int f[s,i] = \cdot$	$\begin{cases} a_{0,s}e_{s,x_{1}}, \\ e_{s,x_{i}}\sum_{t\in Q}f[t,i-1]\cdot a_{t,s}, \end{cases}$	if i=1,
rorward		$e_{s,x_i} \sum_{t \in Q} f[t, i-1] \cdot a_{t,s},$	if $i > 1$.
Backward	1.1 .1	1,	If $i = n$,
Dackwaru		$\sum_{t\in Q} a_{s,t}\cdot e_{t,x_{i+1}}\cdot b[t,i+1],$	if $1 \leq i < n$,

Summary

- Markov property Current state depends only on previous state
- Hidden Markov Models: states are not given only emitted symbols
- Viterbi algorithm: Find the most likely sequence of states given a set of observations
- Baum-Welch algorithm: EM-algorithm to learn **A** and **E** from training set

Reading:

- Jones and Pevzner: Chapters 11.1-11.3
- Lecture notes

Project Proposal due Nov 14th