CSCI 2950-C: Algorithms for Cancer Genomics

Lecture 14: April 21, 2015

Lecturer: Mohammed El-Kebir

Note: These notes may not accurately reflect what was said in class, and may have typos/omissions. If you discover any mistakes or inaccuracies, please bring them to the instructor's attention.

1 Multi-state perfect phylogeny

Definition 1. A perfect phylogeny for M is a tree T with n leaves such that:

- 1. Each taxon labels exactly one leaf;
- 2. Each node $v \in V(T)$ is labeled by $\{0, \ldots, k-1\}^m$;
- 3. Nodes labeled with state $i \in \{0, \ldots, k-1\}$ for character c form a connected subtree $T_c(i)$.

In case k = 2 and assuming an all-zero root node, we have the following theorem.

Theorem 1 (Perfect phylogeny theorem). Matrix $M \in \{0,1\}^{n \times m}$ has a perfect phylogeny if and only if no pair of columns c, d conflicts, i.e. contains binary pairs (0,1); (1,0); and (1,1).

For general k we have the following hardness result.

Theorem 2 (Bodlaender 1992). The multi-state perfect phylogeny problem is NP-complete.

1.1 Cladistic characters

A *cladistic* character c is defined by a tree S_c whose node set is given by $V(S_c) = \{s_0, \ldots, s_{k-1}\}$.

Definition 2. The reduced tree R_c of perfect phylogeny T with respect to character c has vertex set $V(R_c)$ and edge set $E(R_c)$ where

- $V(R_c) = \{X_0, \dots, X_{k-1}\}$ such that $X_i = V(T_c(i))$,
- $(X_i, X_j) \in E(R_c)$ iff $i \neq j$ and there exists $u \in X_i$ and $v \in X_j$ such that $(u, v) \in E(T)$.

Definition 3. A perfect phylogeny T is consistent with cladisitic character c provided that $(s_i, s_j) \in E(S_c)$ if and only if $(X_i, X_j) \in E(R_c)$.

We say that a perfect phylogeny T is *consistent* if it is consistent with all its cladistic characters.

Definition 4. The cladistic expansion function $h : \{1, \ldots, m\} \times \{0, \ldots, k-1\} \rightarrow \{0, 1\}^k$ is defined as $h(c, p) = \mathbf{x}^T$ where

$$x_l = \begin{cases} 1, & \text{if } l \text{ is a descendant of } p, \\ 0, & \text{otherwise.} \end{cases}$$

for all $0 \leq l < k$.

Spring 2015

Scribe:

Definition 5. Given a matrix $M = [a_{ij}] \in \{0, \ldots, k-1\}^{n \times m}$, its cladistic expansion M' is a $n \times km$ binary matrix defined as

$$\begin{pmatrix} h(1, a_{1,1}) & \dots & h(n, a_{1,m}) \\ \vdots & \ddots & \vdots \\ h(1, a_{n,1}) & \dots & h(n, a_{n,m}) \end{pmatrix}.$$

Note that we can go from $M \leftrightarrow M'$. Also, by Theorem 1 we have $M' \leftrightarrow T'$. We now define $T \leftrightarrow T'$.

Lemma 1. Let $M \in \{0, ..., k-1\}^{n \times m}$. M admits a consistent perfect phylogeny if and only if M' is conflict-free.

Proof. (\Leftarrow) Let T' be the perfect phylogeny corresponding to M'. Obtain T from T'. We claim that T is a consistent perfect phylogeny for M.

1+2. By definition of T (and the transformation).

- 3. Consider cladistic character c and state p. Since T' is a perfect phylogeny, T' has exactly one edge labeled by (c, p). Therefore all descendants of this edge whose immediate ancestor for c is labeled by (c, p) form a subtree.
- 4. By definition of M'.

 (\Rightarrow) Let T be a consistent perfect phylogeny on M. Obtain T' from T. We claim that T' is a perfect phylogeny (on M').

1+2. By definition of T' (and the transformation).

3. Suppose for a contradiction, that binary character d does not induce a connected subtree $T'_d(1)$.¹ Let (c, p) be the corresponding cladistic character state pair.

Let $u, v \in T'_d(1)$ be two distinct vertices whose (unique) outgoing arcs have target vertices that are not in $T'_d(1)$. Let s and t be the states of u and v, respectively. Since T is a perfect phylogeny, we have that $s \neq t$. Therefore we can assume w.l.o.g. that $s \neq p$. Hence, p < s.

Let w be the unique parent of v and let q be its state for character c. Note that w has state 0 for binary character d. Thus, we have that q < s. Since p < s, w is the parent of v and S_c is a tree, we have that p < q < s. The transformation however would have then resulted in a 1 for binary character d (recall, it corresponds to state p for character c). This is a contradiction.

¹Note that we can use state 1 without loss of generality, as $T'_d(0)$ is the complement of $T'_d(1)$.