CS 466 Introduction to Bioinformatics Lecture 16

Mohammed El-Kebir October 31, 2018

Course Announcements

Discuss HW3 Grading: Thursday, Nov 1, 11-12 (whiteboard on 3rd floor by elevator)

Outline

- Two-State Perfect Phylogeny
- Multi-State Perfect Phylogeny
- Large Maximum Parsimony Phylogeny Problem
- Summary

Reading:

Lecture notes

Binary Characters

Characters

	1	2	3	4	5
A	0	1	1	0	0
Species O B	0	0	1	1	0
Spe	1	1	1	1	0
D	1	1	0	1	1

Characters only have two possible states

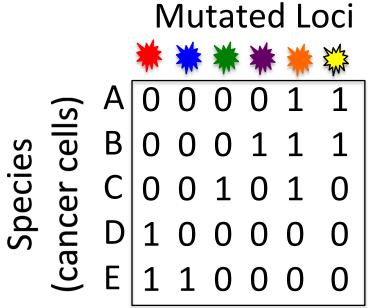
Possible Encoding:

0 : not-mutated

1: mutated

Possible Encoding:

0 : no wings


1: wings

Question: Given *n* binary characters, what is the smallest parsimony score?

Infinite Sites Model = Two-state Perfect Phylogeny

The genome is large Mutations are rare

Infinite sites model: multiple mutations never occur at the same position

1: mutated

0: not

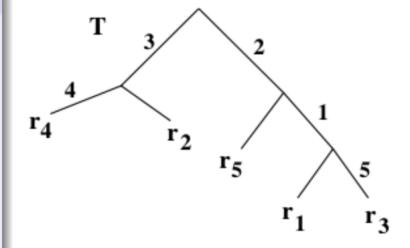
All sites are bi-allelic: mutated or not.

[Kimura, 1969]

Two-state Perfect Phylogeny

Matrix $M \in \{0,1\}^{n \times m}$ has n taxa and m characters

Taxon f has state 1 for character c


 ⇔ f possesses character c

	c_1	<i>c</i> ₂	<i>c</i> ₃	<i>C</i> ₄	<i>C</i> ₅
$\overline{r_1}$	1	1	0	0	0
r_2	0	0	1	0	0
<i>r</i> ₃	1	1	0	0	1
<i>r</i> ₄	0	0	1	1	0
<i>r</i> ₅	0	1 0 1 0 1	0	0	0

Definition

A perfect phylogeny for *M* is a rooted tree *T* with *n* leaves such that:

- Each taxon labels only one leaf
- ② Each character labels only one edge
- Oharacter possessed by a taxon are on unique path to root

Root node is all zero ancestor

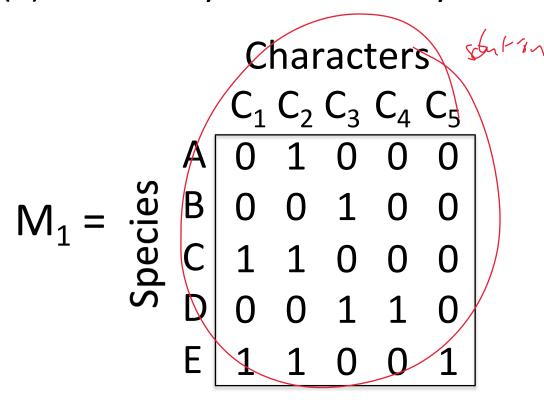
Two-state Perfect Phylogeny Problem

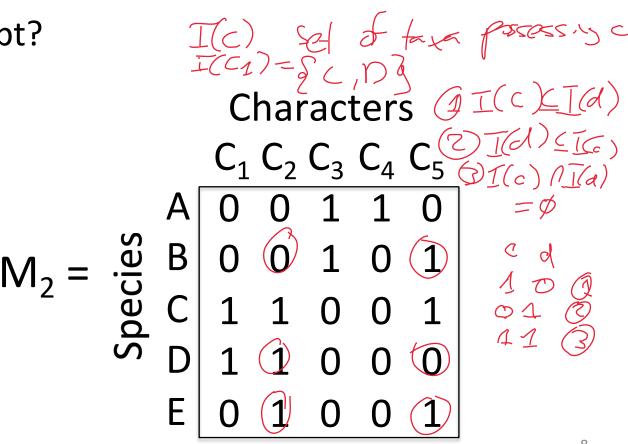
Input:

Matrix $M \in \{0,1\}^{n \times m}$ has n taxa and m characters

• Taxon f has state 1 for character c $\Leftrightarrow f$ possesses character c

	c_1	<i>c</i> ₂	<i>c</i> ₃	<i>C</i> ₄	<i>C</i> ₅
$\overline{r_1}$	1	1	0	0	0
<i>r</i> ₂	0	0	1	0	0
<i>r</i> ₃	1	1	0	0	1
<i>r</i> ₄	0	0	1	1	0
<i>r</i> ₅	0	1	0 1 0 1 0	0	0

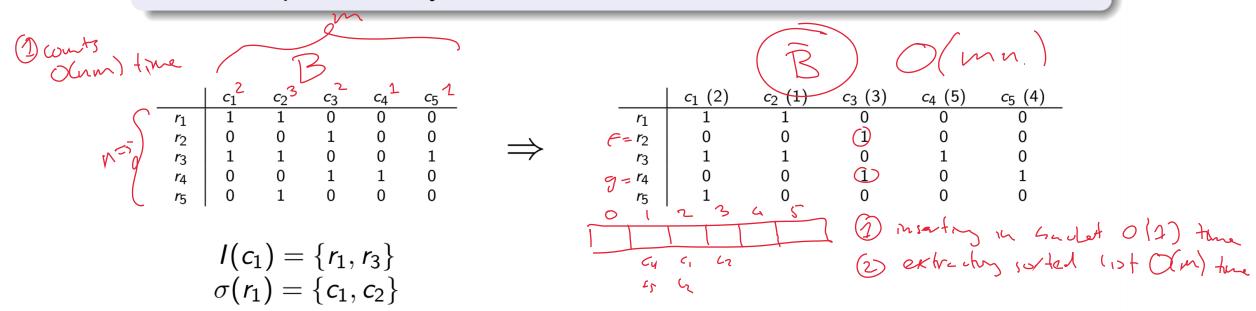

Problem


Given $M \in \{0,1\}^{n \times m}$ does M have a perfect phylogeny?

Try it yourself!

Only one of these matrices can be used to build a perfect phylogeny.

- (1) As a group, decide on an approach to try to determine which one is which.
- (2) Try out your approach to see if you can construct the tree.
- (3) What did you learn from your attempt?

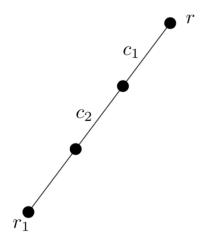

The Perfect Phylogeny Problem – Preliminaries

Problem

Given $M \in \{0,1\}^{n \times m}$ does M have a perfect phylogeny?

Definition

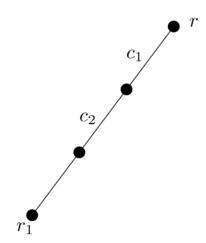
I(c) is the set of taxa that possess character c; and $\sigma(f)$ is the set of characters possessed by taxon f.



Sort columns of M s.t. c < d iff $|I(c)| \ge |I(d)|$. Break ties arbitrarily.

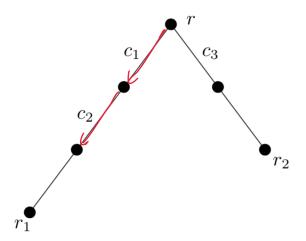
- Consider rows of *M* iteratively
 - $ightharpoonup T_i$ is tree of first *i* rows of *M*
- T_1 is a path graph
 - ► Terminal nodes *r* and 1
 - ▶ $|\sigma(1)| + 1$ edges labeled by $\sigma(1)$

$$c < d \text{ iff } |I(c)| \ge |I(d)|$$


	c_1	<i>c</i> ₂	<i>c</i> ₃	<i>C</i> ₄	<i>c</i> ₅	_
$\overline{r_1}$	1	1	0	0	0	RBGIL
r_2	0	0	1	0	0	D 17 50/12/
<i>r</i> ₃	1	1	0	1	0	B 13 sorted and no reperted
<i>r</i> ₄	0	0	1 0	0	1	columns.
	1	0	0	0	0	Colomba.

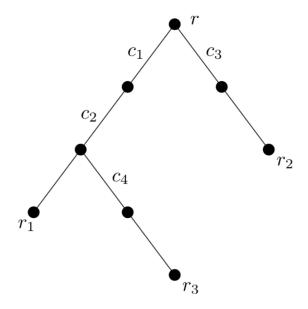
- Consider rows of M iteratively
 - $ightharpoonup T_i$ is tree of first *i* rows of *M*
- \bullet T_1 is a path graph
 - ► Terminal nodes *r* and 1
 - ▶ $|\sigma(1)| + 1$ edges labeled by $\sigma(1)$
- T_{i+1} is a supertree of T_i
 - Let v be last node on walk from r matching characters $\sigma(i+1)$
 - ★ Character *d* is the last match
 - ★ Unmatched characters $\tau(i+1)$

$$c < d$$
 iff $|I(c)| \ge |I(d)|$


	c_1	<i>c</i> ₂	<i>c</i> ₃	<i>c</i> ₄	<i>c</i> ₅
r_1	1	1	0	0	0
r_2	0	0	1	0	0
r_3	1	1	0	1	0
r_4	0	0	1	0	1
<i>r</i> ₅	1	0	0	0	0

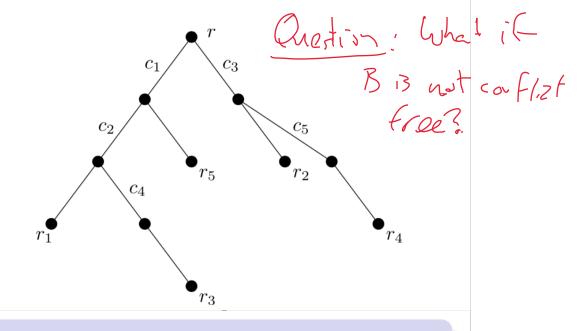
- Consider rows of *M* iteratively
 - $ightharpoonup T_i$ is tree of first *i* rows of *M*
- T_1 is a path graph
 - ▶ Terminal nodes r and 1
 - $ightharpoonup |\sigma(1)| + 1$ edges labeled by $\sigma(1)$
- T_{i+1} is a supertree of T_i
 - Let v be last node on walk from r matching characters $\sigma(i+1)$
 - ★ Character *d* is the last match
 - ★ Unmatched characters $\tau(i+1)$
 - ightharpoonup Extend T_i with path Π
 - ★ Π has terminals v and i+1
 - ★ Π has $|\tau(i+1)| + 1$ edges labeled by $\tau(i+1)$

$$c < d$$
 iff $|I(c)| \ge |I(d)|$


	c_1	<i>c</i> ₂	<i>c</i> ₃	<i>c</i> ₄	c ₅
$\overline{r_1}$	1	1	0	0	0
<i>r</i> ₂	0	0	1	0	0
r ₃ r ₄	Ф	<u>(1</u>	0	1	0
r_4	0	0	1	0	1
<i>r</i> ₅	1	0	0	0	0

- Consider rows of M iteratively
 - $ightharpoonup T_i$ is tree of first *i* rows of *M*
- \bullet T_1 is a path graph
 - ► Terminal nodes r and 1
 - $ightharpoonup |\sigma(1)| + 1$ edges labeled by $\sigma(1)$
- T_{i+1} is a supertree of T_i
 - Let v be last node on walk from r matching characters $\sigma(i+1)$
 - ★ Character *d* is the last match
 - ★ Unmatched characters $\tau(i+1)$
 - ightharpoonup Extend T_i with path Π
 - ★ Π has terminals v and i+1
 - ★ Π has $|\tau(i+1)| + 1$ edges labeled by $\tau(i+1)$

$$c < d \text{ iff } |I(c)| \geq |I(d)|$$


	c_1	<i>c</i> ₂	<i>c</i> ₃	<i>c</i> ₄	<i>c</i> ₅
r_1	1	1	0	0	0
r_2	0	0	1	0	0
r_3	1	1	0	1	0
<i>r</i> ₄	0	0	1	0	1
<i>r</i> ₅	1	0	0	0	0

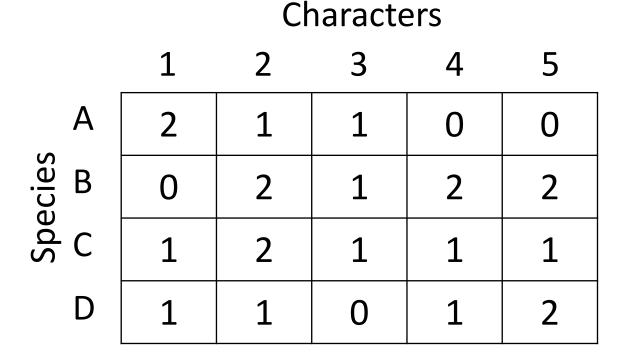
- Consider rows of *M* iteratively
 - $ightharpoonup T_i$ is tree of first *i* rows of *M*
- T_1 is a path graph
 - Terminal nodes r and 1
 - $ightharpoonup |\sigma(1)| + 1$ edges labeled by $\sigma(1)$
- T_{i+1} is a supertree of T_i
 - Let v be last node on walk from r matching characters $\sigma(i+1)$
 - ★ Character *d* is the last match
 - ★ Unmatched characters $\tau(i+1)$
 - ightharpoonup Extend T_i with path Π
 - ★ Π has terminals v and i+1
 - ★ Π has $|\tau(i+1)| + 1$ edges labeled by $\tau(i+1)$

$$c < d \text{ iff } |I(c)| \geq |I(d)|$$

	c_1	<i>c</i> ₂	<i>c</i> ₃	<i>c</i> ₄	<i>c</i> ₅
$\overline{r_1}$	1	1	0	0	0
r_2	0	0	1	0	0
r_3	1	1	0	1	0
r_4	0	0	1	0	1
<i>r</i> ₅	1	0	0	0	0

Lemma

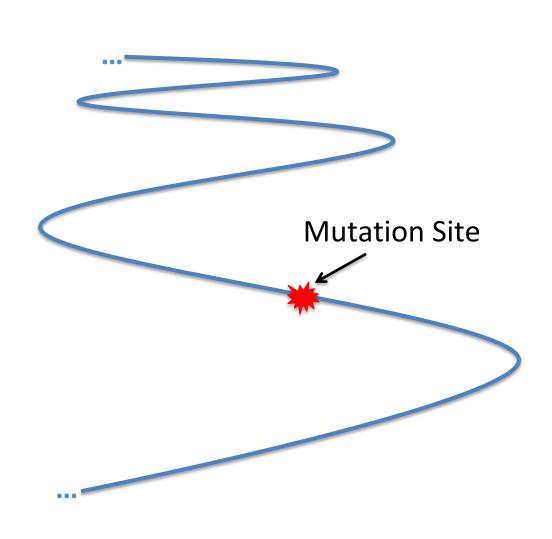
Let $M_i \in [0, 1]^{i \times m}$ be a submatrix of M. If M is conflict-free then T_i is a perfect phylogeny for M_i .


Outline

- Two-State Perfect Phylogeny
- Multi-State Perfect Phylogeny
- Large Maximum Parsimony Phylogeny Problem
- Summary

Reading:

Lecture notes


Integer Characters

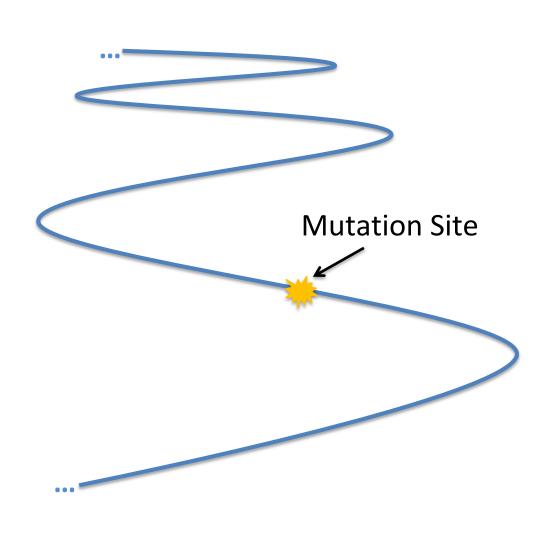
Characters have **k** possible states

Question: Given *n* integer characters with *k* states, what is the smallest parsimony score?

Infinite Alleles Model = Multi-state Perfect Phylogeny

Infinite alleles model:

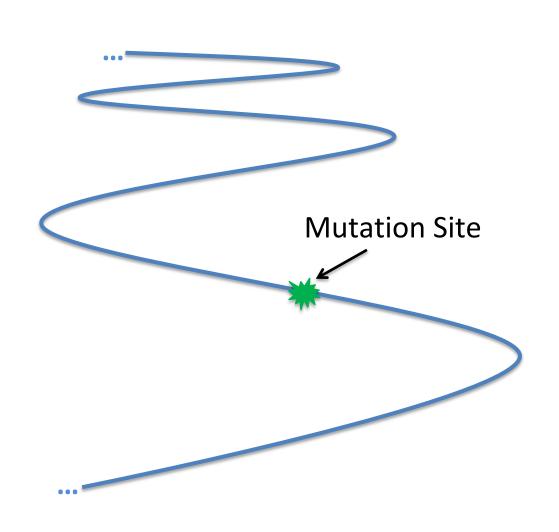
- For any mutation, there are an infinite number of possibilities of what mutation looks like (states).
- So, the same position can be mutated multiple times, but it never mutates to the same "allele" or state.


Site History:

Time

Characters have integer states

Infinite Alleles Model = Multi-state Perfect Phylogeny


Infinite alleles model:

- For any mutation, there are an infinite number of possibilities of what mutation looks like (states).
- So, the same position can be mutated multiple times, but it never mutates to the same "allele" or state.

Characters have integer states

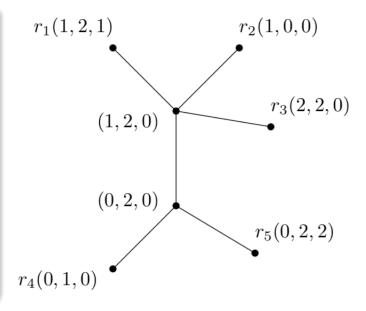
Infinite Alleles Model = Multi-state Perfect Phylogeny

Infinite alleles model:

- For any mutation, there are an infinite number of possibilities of what mutation looks like (states).
- So, the same position can be mutated multiple times, but it never mutates to the same "allele" or state.

Characters have integer states

Multi-state Perfect Phylogeny


Matrix $M \in \{0, \dots, k-1\}^{n \times m}$ has n taxa and m characters

	c_1	<i>c</i> ₂	<i>c</i> ₃
r_1	1	2	1
<i>r</i> ₂	1	0	0
r ₁ r ₂ r ₃ r ₄ r ₅	2	2	0
<i>r</i> ₄	0	1	0
<i>r</i> ₅	0	2	2

Definition

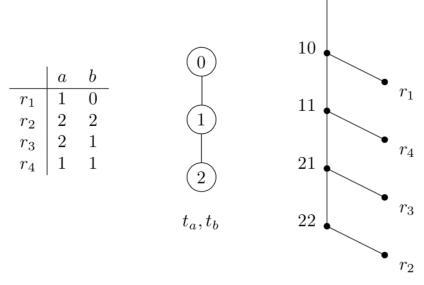
A multi-state perfect phylogeny for M is a tree T with n leaves such that:

- Each taxon labels exactly one leaf
- 2 Each node is labeled by $\{0, \dots, k-1\}^m$
- Nodes labeled with state i for character c form a connected subtree $T_c(i)$

Theorem (Bodlaender et al., 1992) [Bodlaender, Fellows and Warnow]

For general k, the multi-state perfect phylogeny problem is NP-complete

Cladistic vs. Qualitative Characters


Definition

A multi-state perfect phylogeny for M is a tree T with n leaves such that:

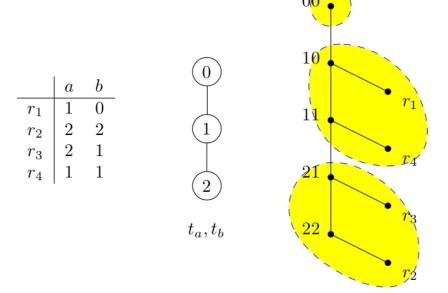
- Each taxon labels exactly one leaf
- ② Each node is labeled by $\{0,\ldots,k-1\}^m$
- 3 Nodes with state i for character c form a connected subtree $T_c(i)$

A cladistic character c has a state tree t_c on its states

A phylogeny T is consistent if the reduced tree $\sigma(T, c)$ is identical with t_c for all c

00

Cladistic vs. Qualitative Characters


Definition

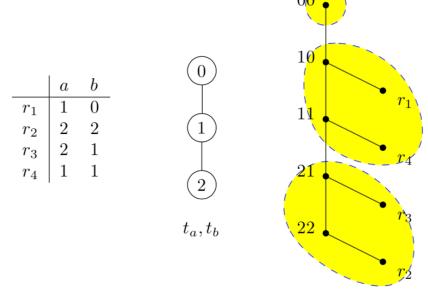
A multi-state perfect phylogeny for M is a tree T with n leaves such that:

- Each taxon labels exactly one leaf
- ② Each node is labeled by $\{0, \ldots, k-1\}^m$
- 3 Nodes with state i for character c form a connected subtree $T_c(i)$

A cladistic character c has a state tree t_c on its states

A phylogeny T is consistent if the reduced tree $\sigma(T, c)$ is identical with t_c for all c

Cladistic vs. Qualitative Characters

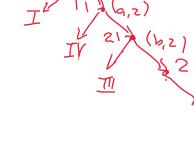

Definition

A multi-state perfect phylogeny for M is a tree T with n leaves such that:

- Each taxon labels exactly one leaf
- 2 Each node is labeled by $\{0, \dots, k-1\}^m$
- 3 Nodes with state i for character c form a connected subtree $T_c(i)$

A cladistic character c has a state tree t_c on its states

A phylogeny T is consistent if the reduced tree $\sigma(T, c)$ is identical with t_c for all c



Multi-state Cladistic Perfect Phylogeny

$$B = \begin{bmatrix} (a,1) & (a,2) & (b,1) & (b,2) \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$

$$M \times M(h-1) \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$

Outline

- Two-State Perfect Phylogeny
- Multi-State Perfect Phylogeny
- Large Maximum Parsimony Phylogeny Problem
- Summary

Reading:

Lecture notes

Small and a Large Problem

Small Maximum Parsimony Phylogeny Problem:

Given $m \times n$ matrix $A = [a_{i,j}]$ and tree T with m leaves, find assignment of character states to each internal vertex of T with minimum parsimony score.

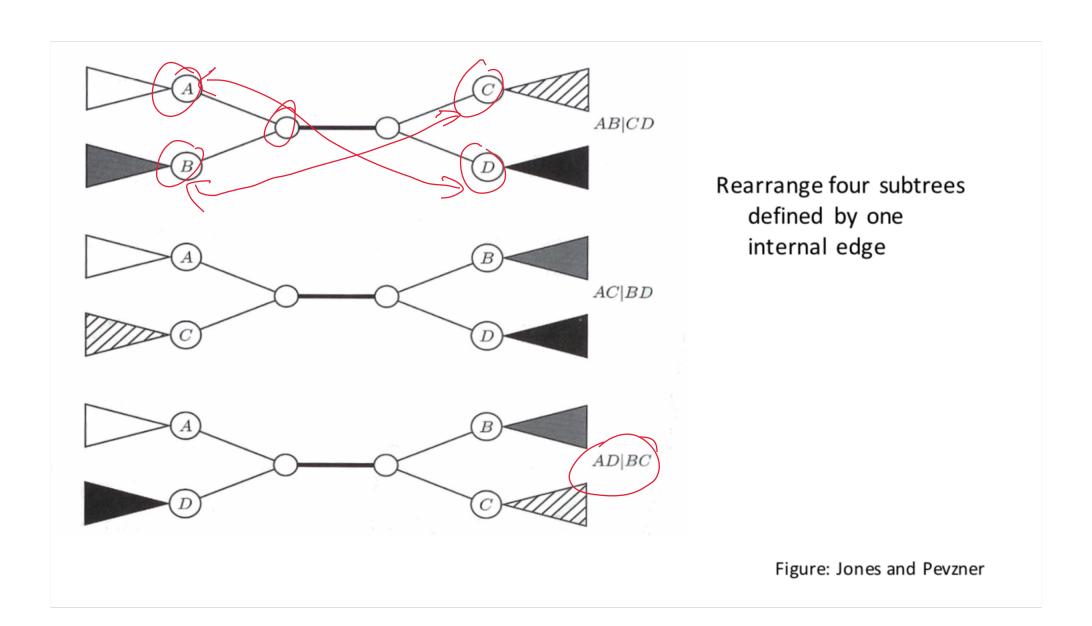
Large Maximum Parsimony Phylogeny Problem:

Given $m \times n$ matrix $A = [a_{i,j}]$, find a tree T with m leaves labeled according to A and an assignment of character states to each internal vertex of T with minimum parsimony score.

General Large Maximum Parsimony Phylogeny

 This problem is NP-hard

 Heuristics using local search (tree moves)

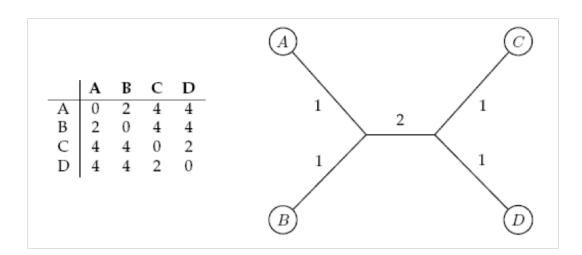

- 1. Start with an arbitrary tree *T.*
- 2. Check "neighbors" of *T*.
- 3. Move to a neighbor if it provides the best improvement in parsimony/likelihood score.

Caveats:

Could be stuck in **local** optimum, and not achieve global optimum

Example: Nearest-Neighbor Interchange (NNI)

Outline


- Two-State Perfect Phylogeny
- Multi-State Perfect Phylogeny
- Large Maximum Parsimony Phylogeny Problem
- Summary

Reading:

Lecture notes

Distance-based Phylogeny

- Small additive distance phylogeny problem
 - In P
 - Recursive algorithm using neighboring leaves
- Large additive distance phylogeny problem
 - In P -- two algorithms:
 - 1. Find degenerate triples and resolve these
 - 2. Neighbor joining: identifies neighboring leaves even when tree is not given
 - Complete characterization of additive matrices using the four-point condition

Character-based Phylogeny

- Small maximum parsimony problem
 - Sankoff algorithm: dynamic programming
- Two-state perfect phylogeny problem
 - In P: O(mn) time
 - Complete characterization as conflict free binary matrices
- Multi-state perfect phylogeny problem
 - NP-hard in general
 - In P given state trees
- Large maximum parsimony problem
 - NP-hard
 - Heuristic using local search

Course Announcements

Discuss HW3 Grading: Thursday, Nov 1, 11-12 (whiteboard on 3rd floor by elevator)