CS 466 Introduction to Bioinformatics Lecture 15

Mohammed El-Kebir

October 29, 2018

Course Announcements

HW 3 due Oct 29 by 11:59pm

Office hour after class in SC 3216

Outline

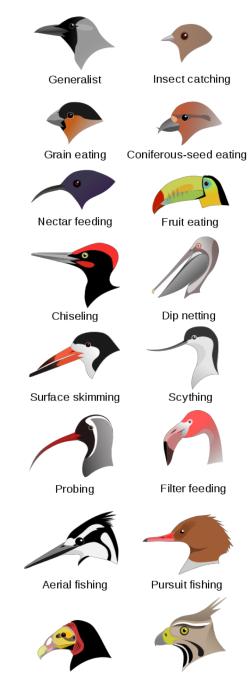
- Recap character-based phylogeny
- Application of small phylogeny maximum parsimony problem to cancer
- Compatibility

Reading:

• Lecture notes

Character-Based Tree Reconstruction

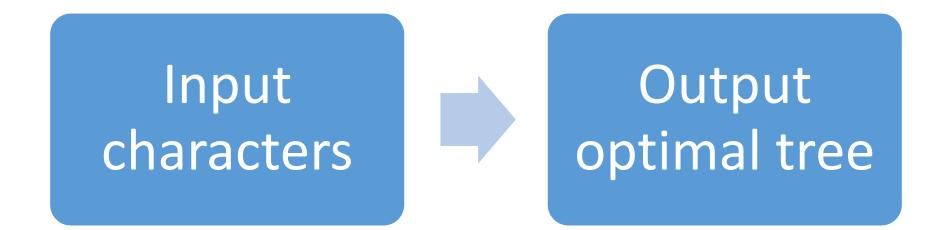
- Characters may be morphological features
 - Shape of beak {generalist, insect catching, ...}
 - Number of legs {2,3,4, ..}
 - Hibernation {yes, no}
- Character may be nucleotides/amino acids
 - {A, T, C, G}
 - 20 amino acids
- Values of a character are called states
 - We assume discrete states



Scavenging

Not to scale

Character-Based Phylogeny Reconstruction

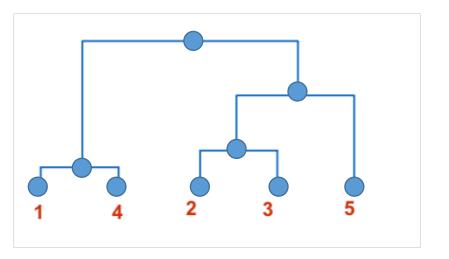


Question: What is optimal?

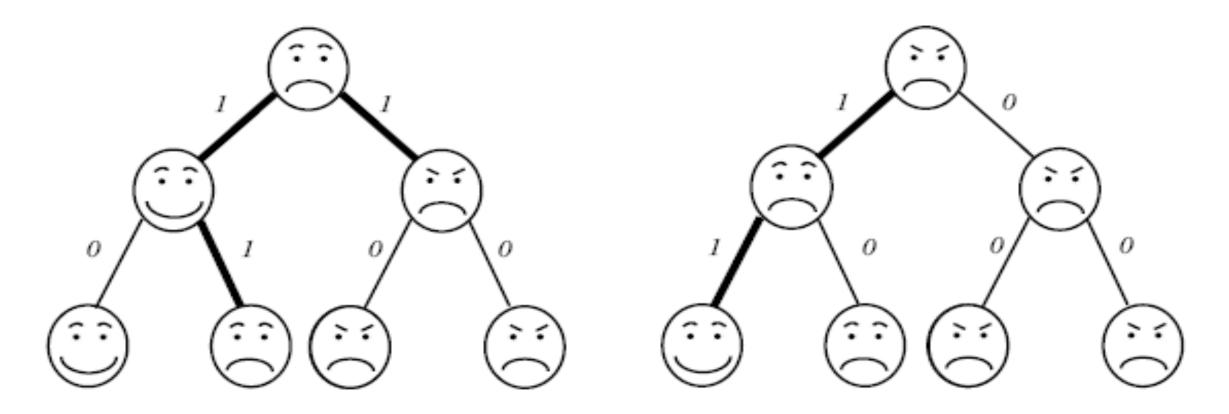
Want: Optimization criterion

Question: How to optimize this criterion?

Want: Algorithm



Character-Based Phylogeny Reconstruction: Criterion



(a) Parsimony Score=3

(b) Parsimony Score=2

Parsimony: minimize number of changes on edges of tree

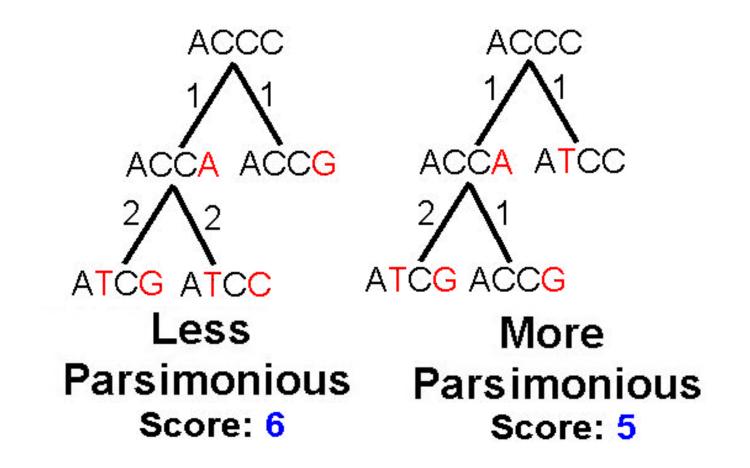
Again, a Small and a Large Problem

Small Maximum Parsimony Phylogeny Problem: Given $m \times n$ matrix $A = [a_{i,j}]$ and tree T with m leaves, find assignment of character states to each internal vertex of Twith minimum parsimony score.

Large Maximum Parsimony Phylogeny Problem: Given $m \times n$ matrix $A = [a_{i,j}]$, find a tree T with m leaves labeled according to A and an assignment of character states to each internal vertex of T with minimum parsimony score.

Question: Are both problems easy (i.e. in P)?

Small Maximum Parsimony Phylogeny Problem



Key observations: (1) Characters can be solved independently. (2) Optimal substructure in subtrees.

Recurrence for Small Maximum Parsimony Problem

Small Maximum Parsimony Phylogeny Problem:

Given rooted tree T whose leaves are labeled by $\sigma : L(T) \rightarrow \Sigma$, find assignment of states to each internal vertex of T with minimum parsimony score.

Let $\mu(v, s)$ be the minimum number of mutations in the subtree rooted at vwhen assigning state s to v.

$$c(s,t) = \begin{cases} 0, & \text{if } s = t \\ 1, & \text{if } s \neq t, \end{cases} \quad \text{Let } \delta(v) \text{ be the set of children of } v. \\ u(v,s) = \min \begin{cases} \infty, & \text{if } v \in L(T) \text{ and } s \neq \sigma(v), \\ 0, & \text{if } v \in L(T) \text{ and } s = \sigma(v), \\ \sum_{w \in \delta(v)} \min_{t \in \Sigma} \{c(s,t) + \mu(w,t)\}, & \text{if } v \notin L(T). \end{cases}$$

Filling out DP Table and Traceback

 $Fill(T,r(T), \delta, Z)$ Filling ant M $Fill(T, v, \varepsilon, \Sigma)$ $O(m|\Sigma|^2)$ if VEL(T) than For se E iF S = G(v) then $\mu(v,s) = 0$ $\mu(v,s) = 0$ alse For $w \in \delta(v)$ // children FII(T, w, 6, 2) $\mu(u, 5) = 0$ $\mu(u,s) \neq = \min \sum_{t \in S} \sum_{i=1}^{\infty} c(s,t) + \mu(w,t)^{2}$ For w E S(V)

1Sachtrace (T, v, M) $G(r(T)) = \arg\min \left\{ \mathcal{M}(r(T), 5) \right\}$ $S \in \mathbb{Z}$ $\int G(u)$ $S \in \mathbb{Z}$ $\int G(u)$ $S \in \mathbb{Z}$ $\int G(u)$ $S \in \mathbb{Z}$ $\int G(u) = \arg\min \left\{ \mathcal{L}(s, t) + \mathcal{M}(v, t) \right\}$ $f \in \mathbb{Z}$ $i F v = r(\tau)$ For w E S(V) Bachtraie (T, w, M)

Let r(T) be the root vertex

Outline

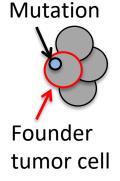
- Recap character-based phylogeny
- Application of small phylogeny maximum parsimony problem to cancer
- Compatibility

Reading:

• Lecture notes

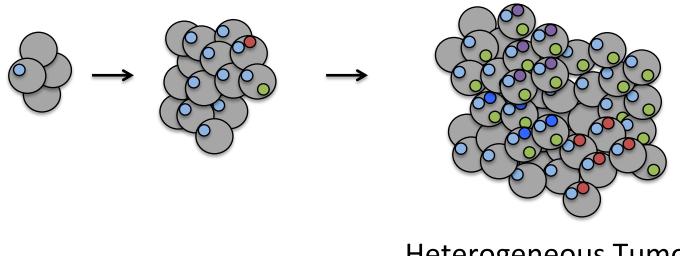
Tumorigenesis: (i) Cell Mutation

Clonal Theory of Cancer [Nowell, 1976]

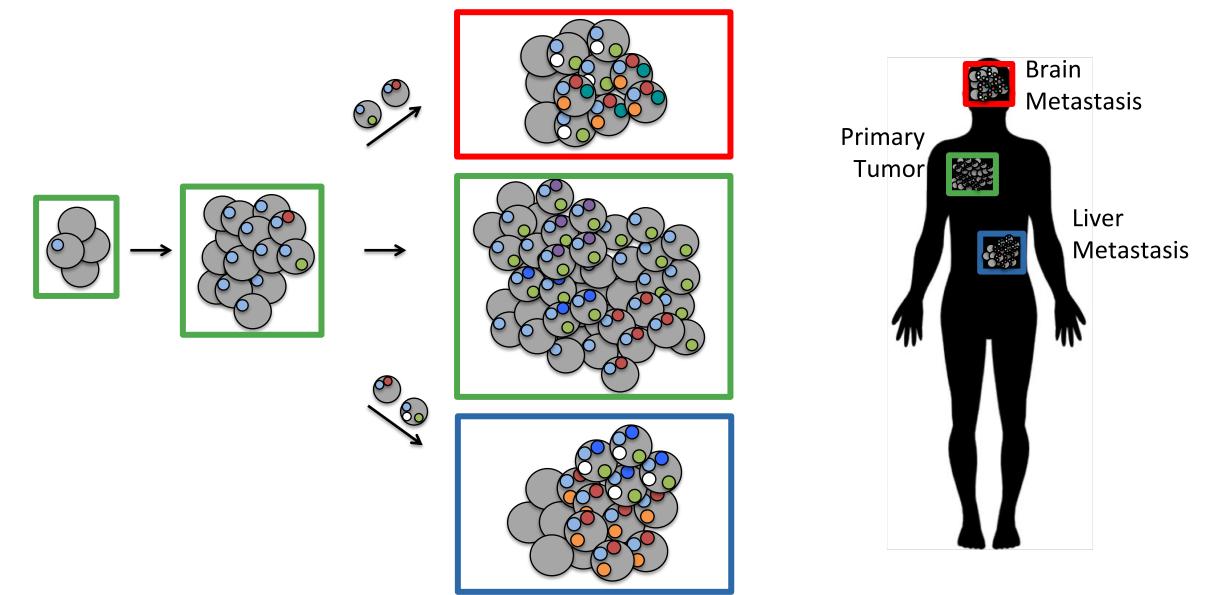


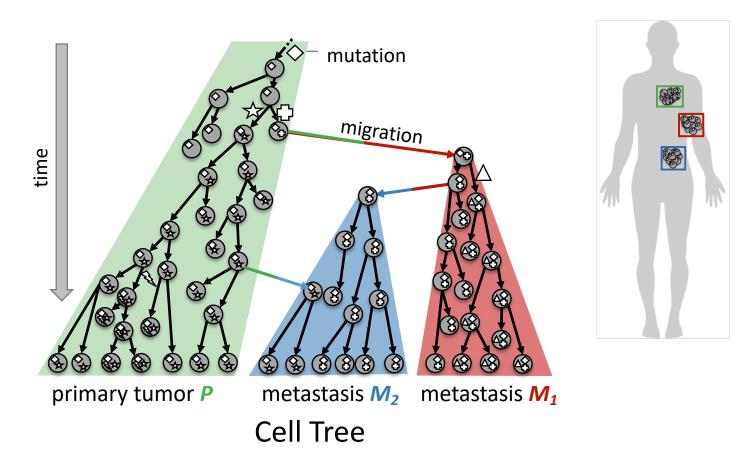
Tumorigenesis: (i) Cell Mutation, (ii) Cell Division

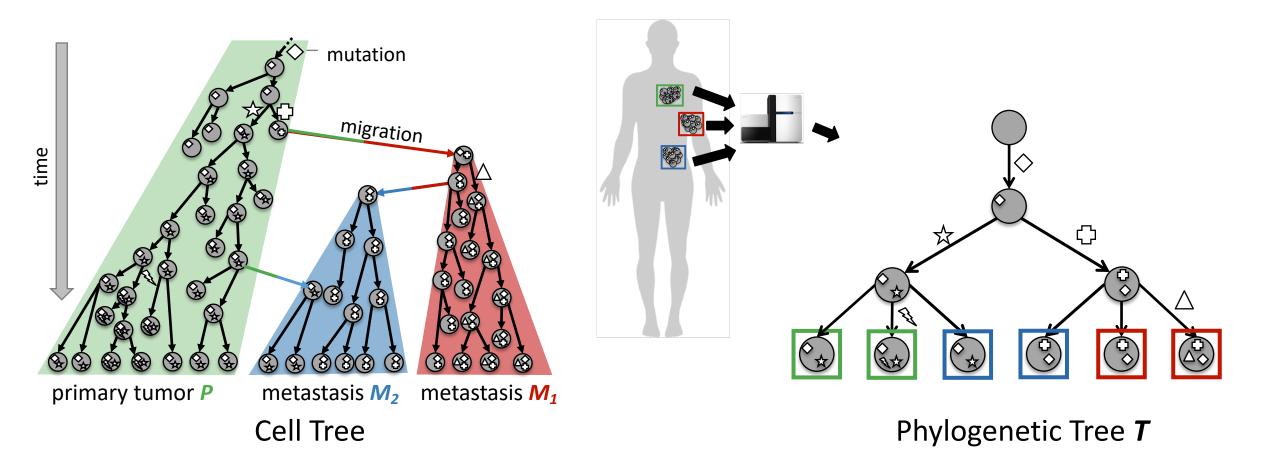
Clonal Theory of Cancer [Nowell, 1976]

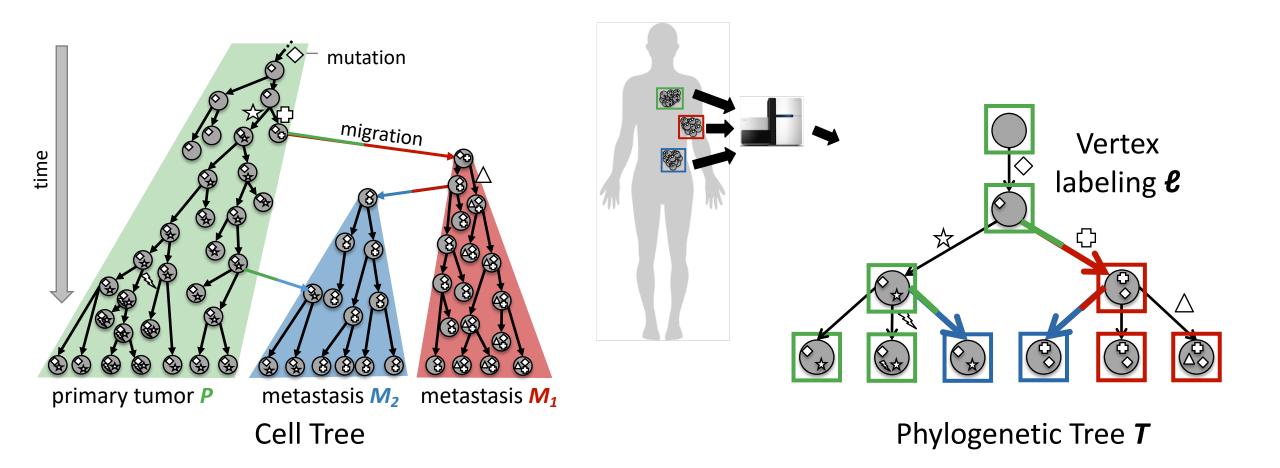


Heterogeneous Tumor









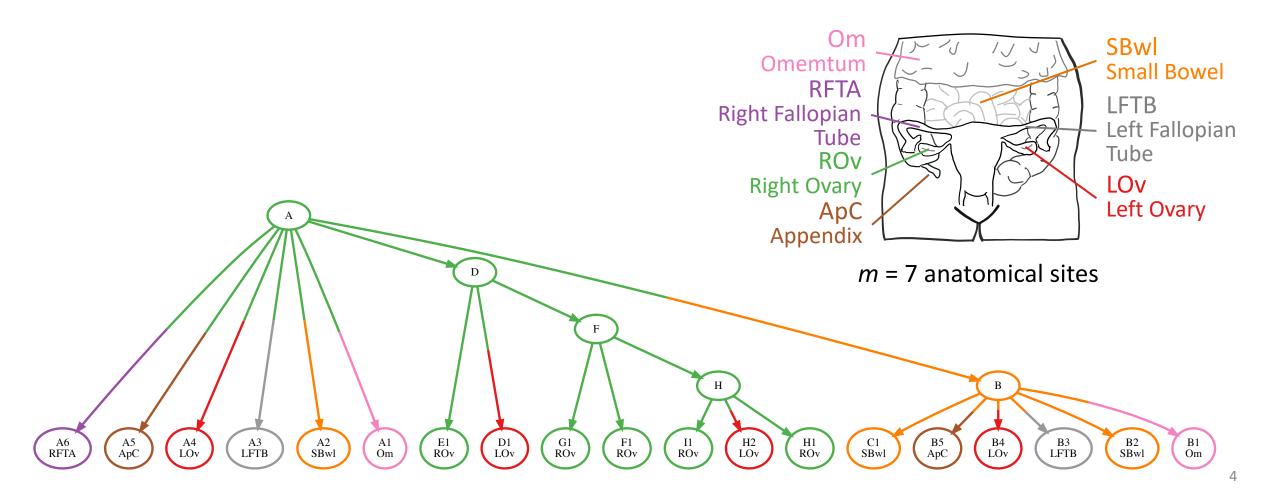
Goal: Given phylogenetic tree *T*, find *parsimonious* vertex labeling *e* with fewest migrations

Slatkin, M. and Maddison, W. P. (1989). A cladistic measure of gene flow inferred from the phylogenies of alleles. *Genetics*, 123(3), 603–613.

Minimum Migration Analysis in Ovarian Cancer

McPherson et al. (2016). Divergent modes of clonal spread and intraperitoneal mixing in high-grade serous ovarian cancer. *Nature Genetics*.

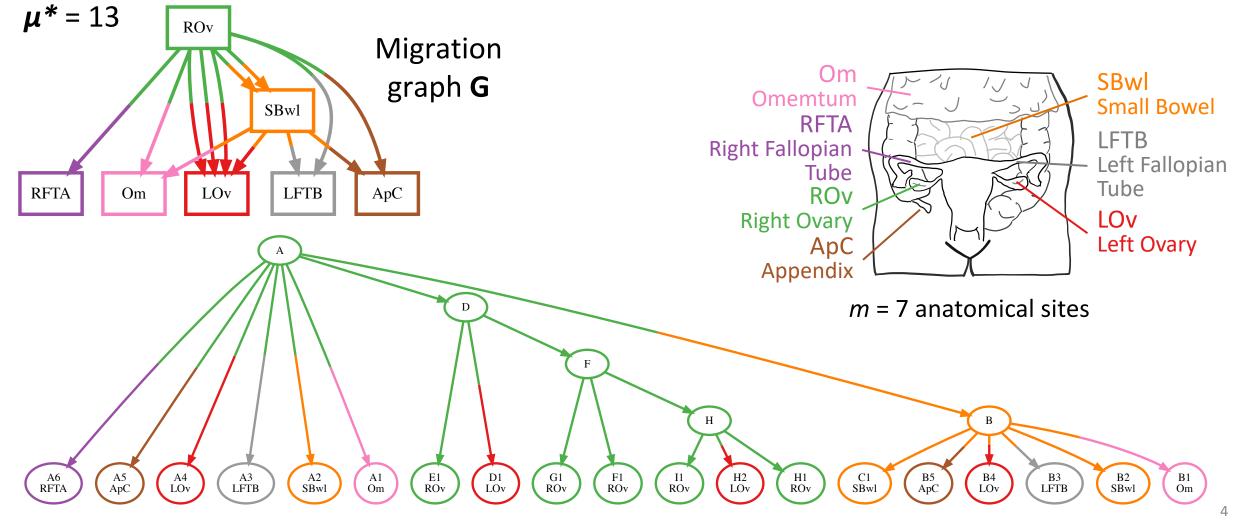
• Instance of the maximum parsimony small phylogeny problem [Fitch, 1971; Sankoff, 1975]



Minimum Migration Analysis in Ovarian Cancer

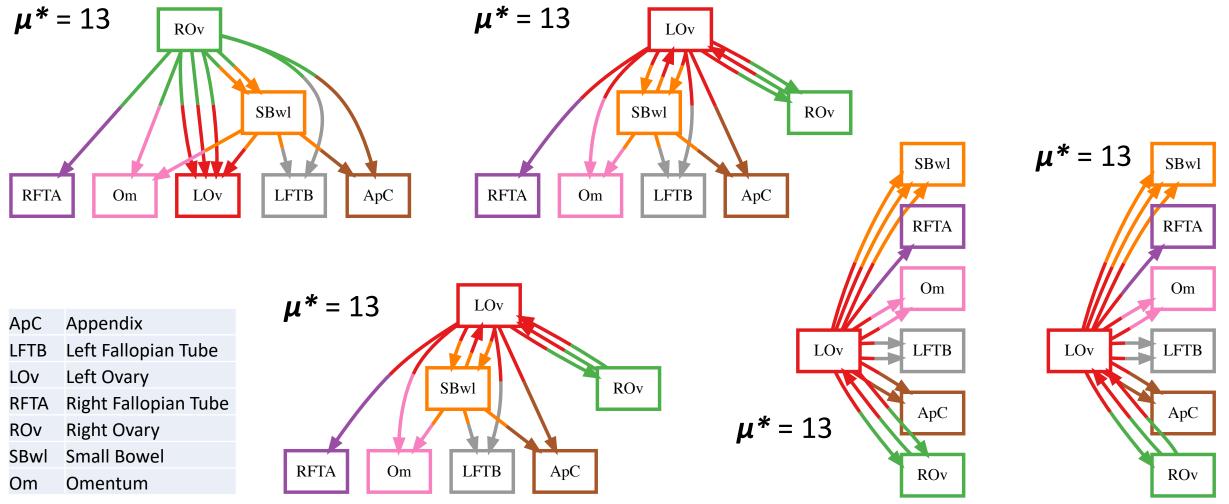
McPherson et al. (2016). Divergent modes of clonal spread and intraperitoneal mixing in high-grade serous ovarian cancer. *Nature Genetics*.

• Instance of the maximum parsimony small phylogeny problem [Fitch, 1971; Sankoff, 1975]



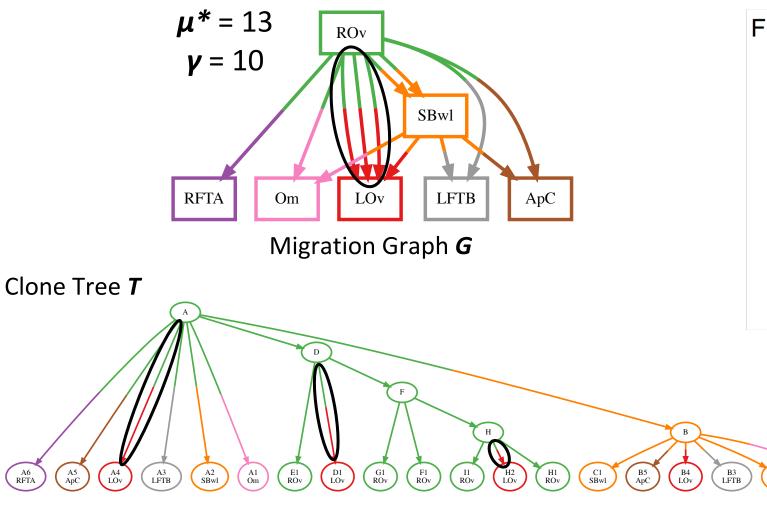
Minimum Migration History is Not Unique

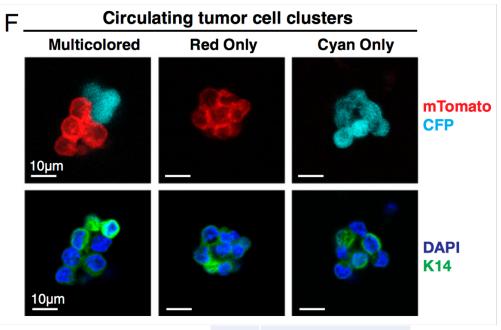
• Enumerate all minimum-migration vertex labelings in the backtrace step



Comigrations: Simultaneous Migrations of Multiple Clones

- Multiple tumor cells migrate simultaneously through the blood stream [Cheung et al., 2016]
- Second objective: number γ of comigrations is the number of multi-edges in migration graph G^+





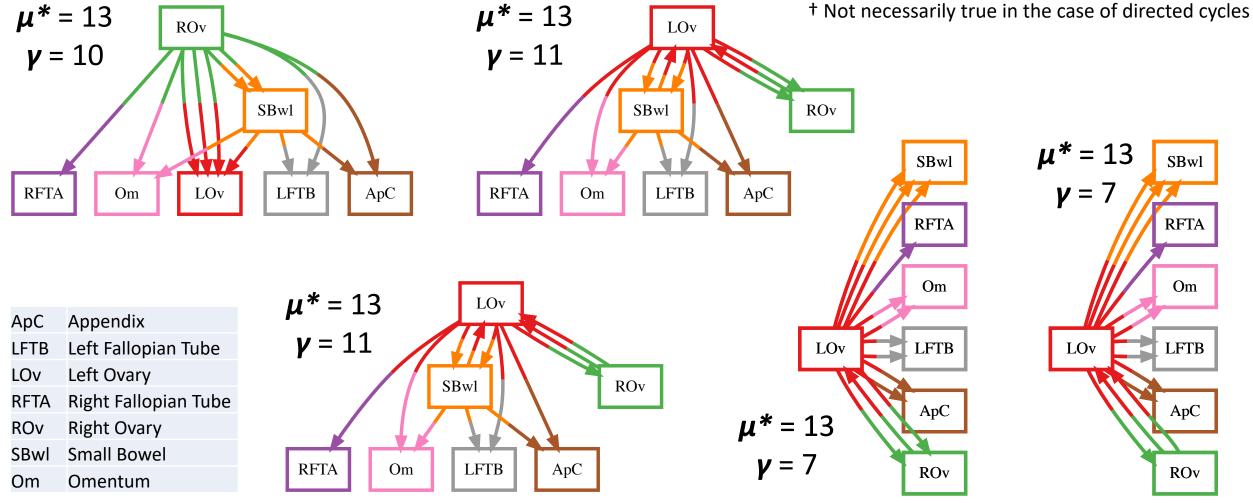
B2 SBwl ⁺ Not necessarily true in the case of directed cycles

АрС	Appendix
LFTB	Left Fallopian Tube
LOv	Left Ovary
RFTA	Right Fallopian Tube
ROv	Right Ovary
SBwl	Small Bowel
Om	Omentum

6

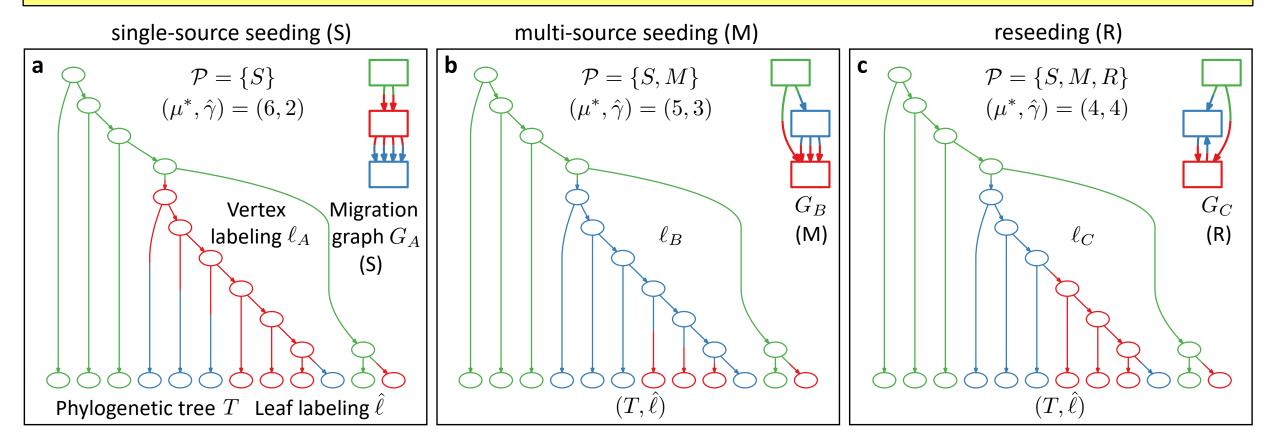
Comigrations: Simultaneous Migrations of Multiple Clones

- Multiple tumor cells migrate simultaneously through the blood stream [Cheung et al., 2016]
- Second objective: number γ of comigrations is the number of multi-edges in migration graph G^+



Constrained Multi-objective Optimization Problem

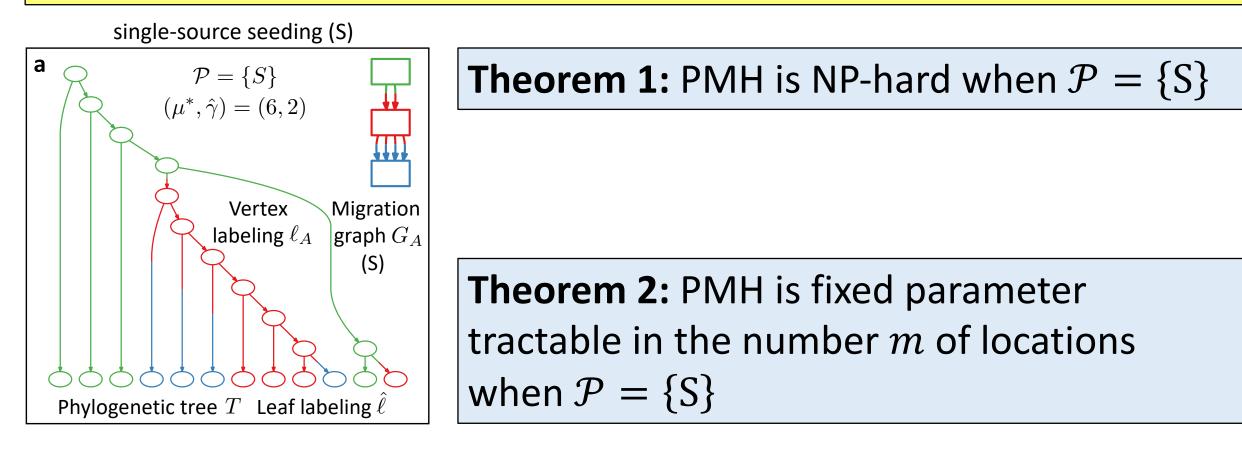
Parsimonious Migration History (PMH): Given a phylogenetic tree T and a set $\mathcal{P} \subseteq \{S, M, R\}$ of allowed migration patterns, find vertex labeling ℓ with minimum migration number $\mu^*(T)$ and smallest comigration number $\hat{\gamma}(T)$.



El-Kebir, M., Satas, G., & Raphael, B. J. (2018). Inferring parsimonious migration histories for metastatic cancers. *Nature Genetics*, 50(5), 718–726.

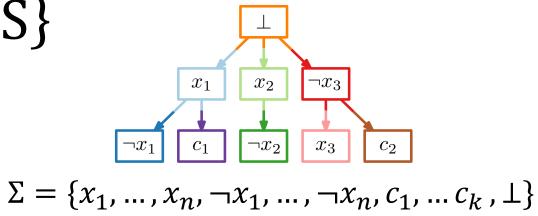
Results [El-Kebir, WABI 2018]

Parsimonious Migration History (PMH): Given a phylogenetic tree T and a set $\mathcal{P} \subseteq \{S, M, R\}$ of allowed migration patterns, find vertex labeling ℓ with minimum migration number $\mu^*(T)$ and smallest comigration number $\hat{\gamma}(T)$.



PMH is NP-hard when $\mathcal{P} = \{S\}$

3-SAT: Given $\varphi = \bigwedge_{i=1}^{k} (y_{i,1} \lor y_{i,2} \lor y_{i,3})$ with variables $\{x_1, \dots, x_n\}$ and k clauses, find $\varphi : [n] \rightarrow \{0,1\}$ satisfying φ

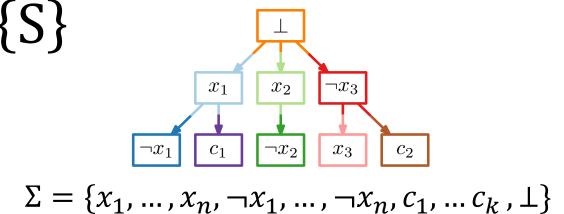


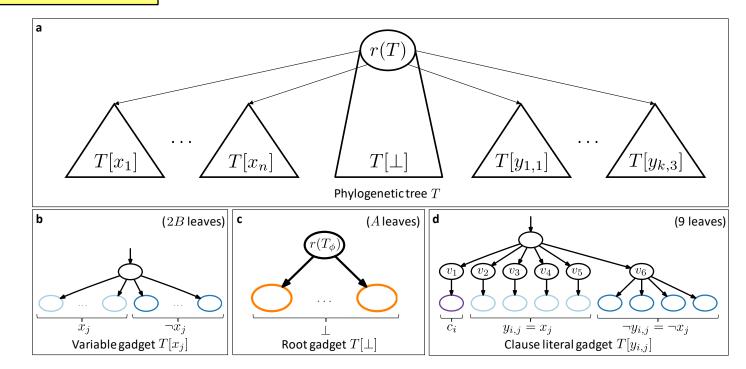
PMH is NP-hard when $\mathcal{P} = \{S\}$

3-SAT: Given $\varphi = \bigwedge_{i=1}^{k} (y_{i,1} \lor y_{i,2} \lor y_{i,3})$ with variables $\{x_1, \dots, x_n\}$ and k clauses, find $\varphi : [n] \rightarrow \{0,1\}$ satisfying φ

Three ideas:

- 1. Ensure that $(x, \neg x) \in E(G)$ or $(\neg x, x) \in E(G)$
- 2. Ensure that $\ell^*(r(T)) = \bot$
- 3. Ensure that ϕ is satisfiable if and only if ℓ^* encodes a satisfying truth assignment



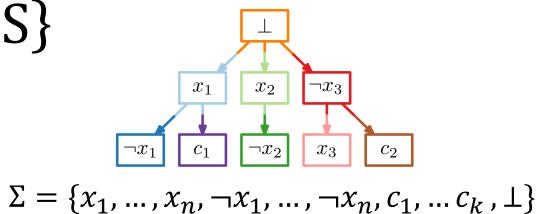


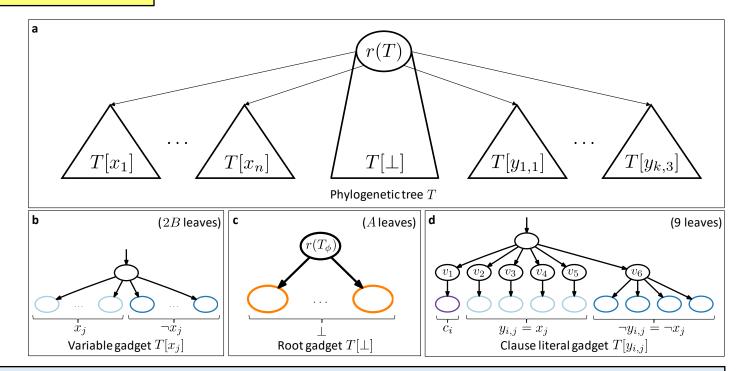
PMH is NP-hard when $\mathcal{P} = \{S\}$

3-SAT: Given $\varphi = \bigwedge_{i=1}^{k} (y_{i,1} \lor y_{i,2} \lor y_{i,3})$ with variables $\{x_1, \dots, x_n\}$ and k clauses, find $\varphi : [n] \rightarrow \{0,1\}$ satisfying φ

Three ideas:

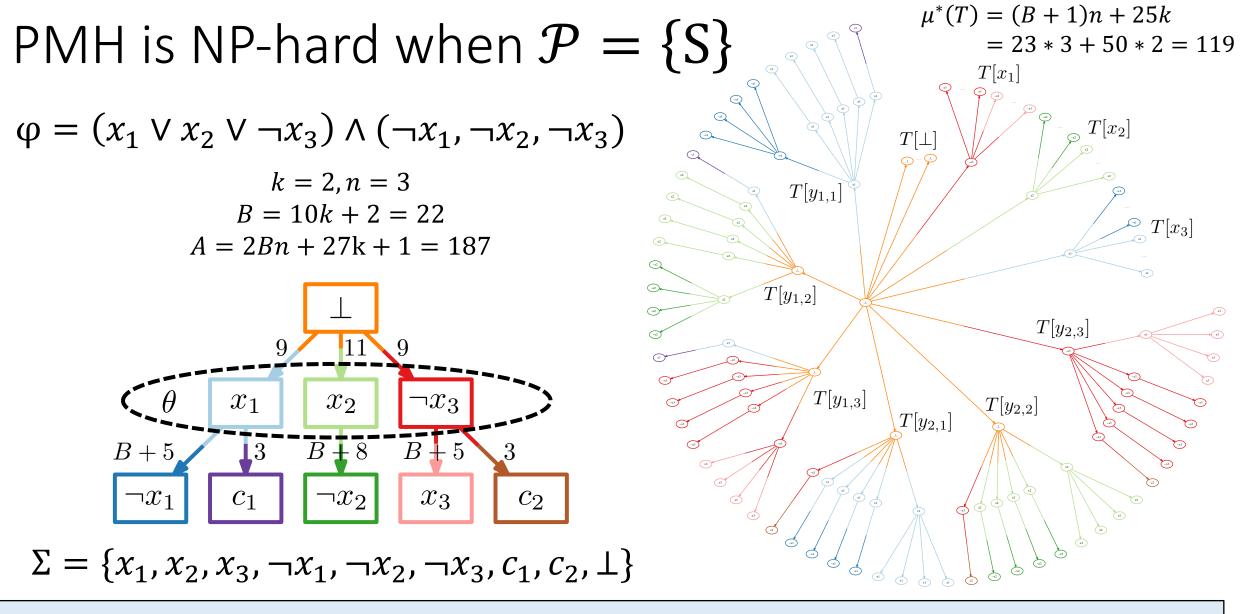
- 1. Ensure that $(x, \neg x) \in E(G)$ or $(\neg x, x) \in E(G)$
- 2. Ensure that $\ell^*(r(T)) = \bot$
- 3. Ensure that ϕ is satisfiable if and only if ℓ^* encodes a satisfying truth assignment





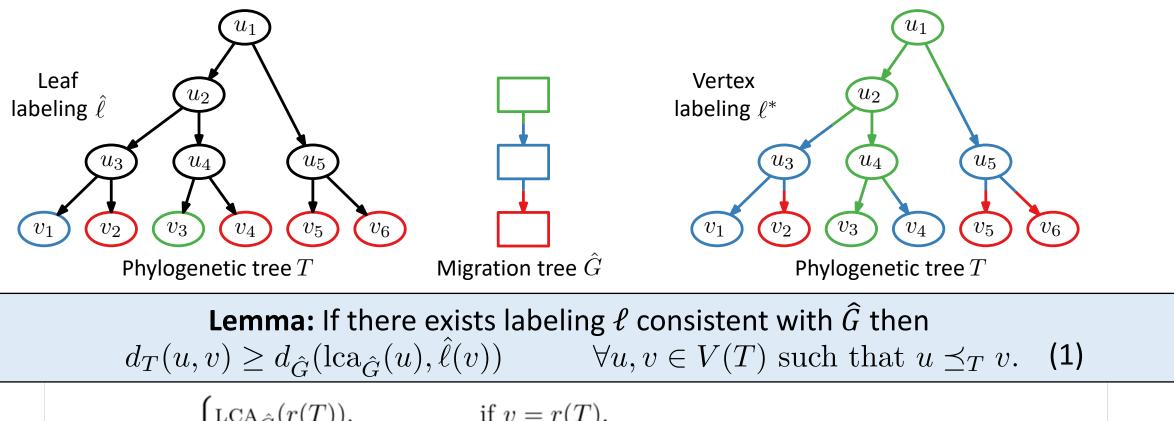
Lemma: Let B > 10k + 1 and A > 2Bn + 27k. Then, φ is satisfiable if and only if $\mu^*(T) = (B + 1)n + 25k$

27



Lemma: Let B > 10k + 1 and A > 2Bn + 27k. Then, φ is satisfiable if and only if $\mu^*(T) = (B + 1)n + 25k$

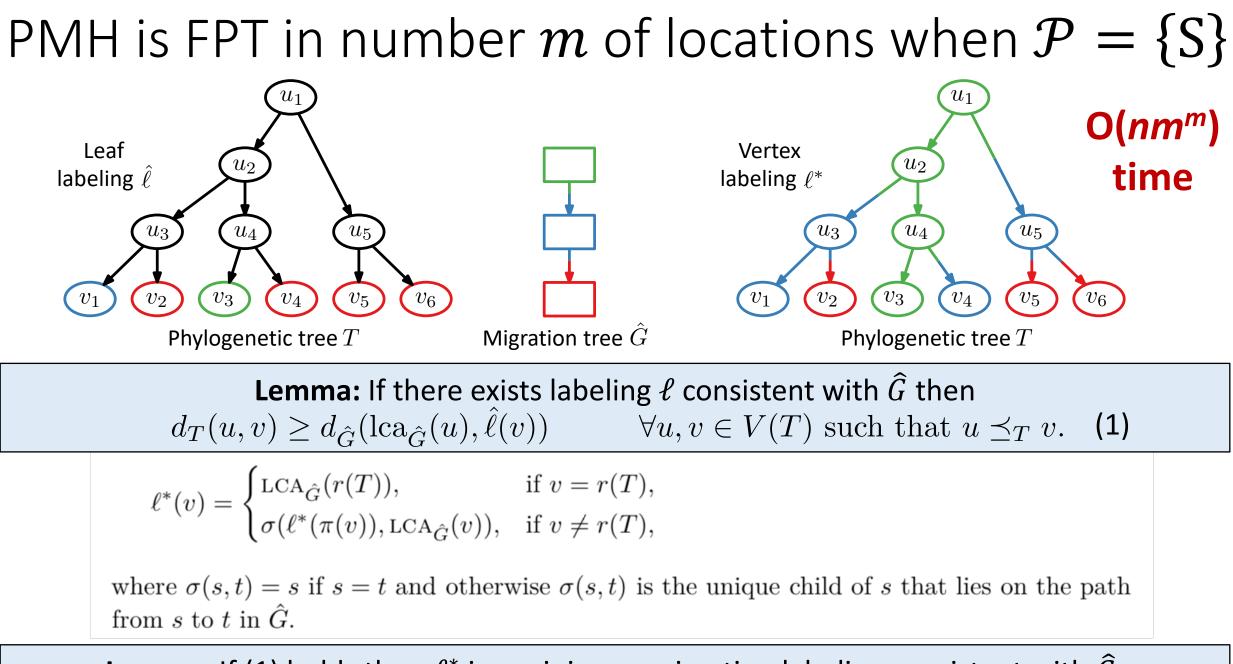
PMH is FPT in number m of locations when $\mathcal{P} = \{S\}$



$$\ell^*(v) = \begin{cases} \operatorname{DON}_G(\ell(T)), & \operatorname{if} v \neq \ell(T), \\ \sigma(\ell^*(\pi(v)), \operatorname{LCA}_{\hat{G}}(v)), & \operatorname{if} v \neq r(T), \end{cases}$$

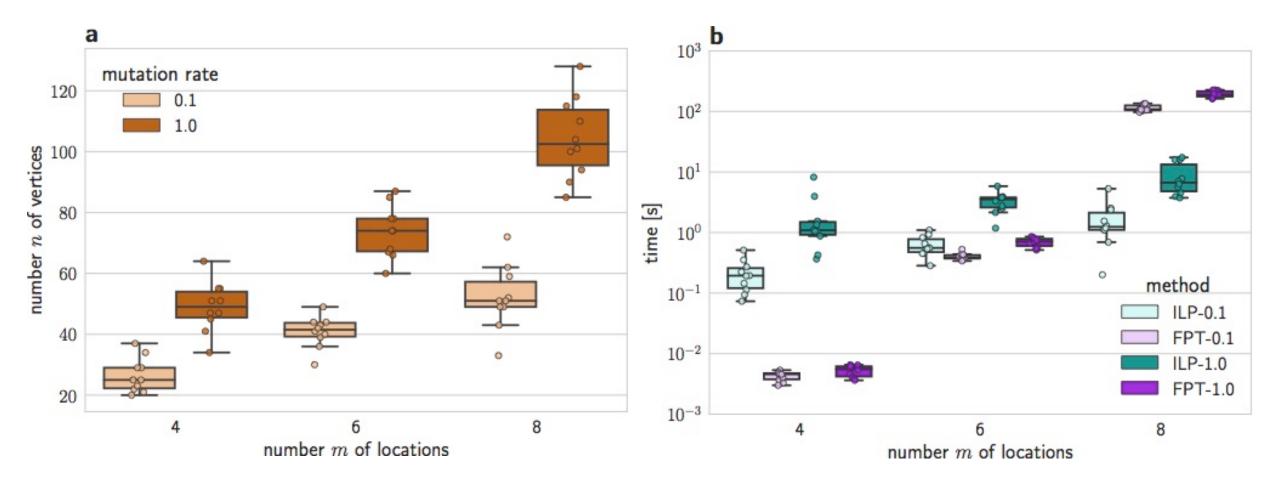
where $\sigma(s,t) = s$ if s = t and otherwise $\sigma(s,t)$ is the unique child of s that lies on the path from s to t in \hat{G} .

Lemma: If (1) holds then ℓ^* is a minimum migration labeling consistent with \widehat{G} .



Lemma: If (1) holds then ℓ^* is a minimum migration labeling consistent with \widehat{G} .

Simulations



Available on: https://github.com/elkebir-group/PMH-S

Outline

- Recap character-based phylogeny
- Application of small phylogeny maximum parsimony problem to cancer
- Compatibility

Reading:

• Lecture notes

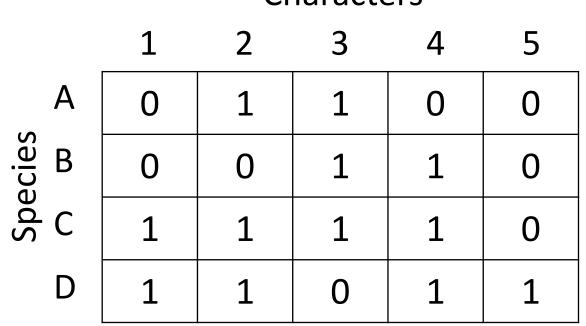
Maximum Parsimony

Small Maximum Parsimony Phylogeny Problem: Given $m \times n$ matrix $A = [a_{i,j}]$ and tree T with m leaves, find assignment of character states to each internal vertex of Twith minimum parsimony score.

Large Maximum Parsimony Phylogeny Problem:

Given $m \times n$ matrix $A = [a_{i,j}]$, find a tree T with m leaves labeled according to A and an assignment of character states to each internal vertex of T with minimum parsimony score.

Binary Characters



Characters

Characters only have two possible states

Possible Encoding: 0 : not-mutated 1 : mutated Possible Encoding: 0 : no wings 1 : wings

Binary Characters	(1) Partition & character c (1) Partition Im I tax
Charactors	BOO Carles States

4

0

1

1

1

5

0

0

 $\mathbf{0}$

3

1

1

1

 $\mathbf{0}$

1

0

1

1

Α

D

Species O B 0

0

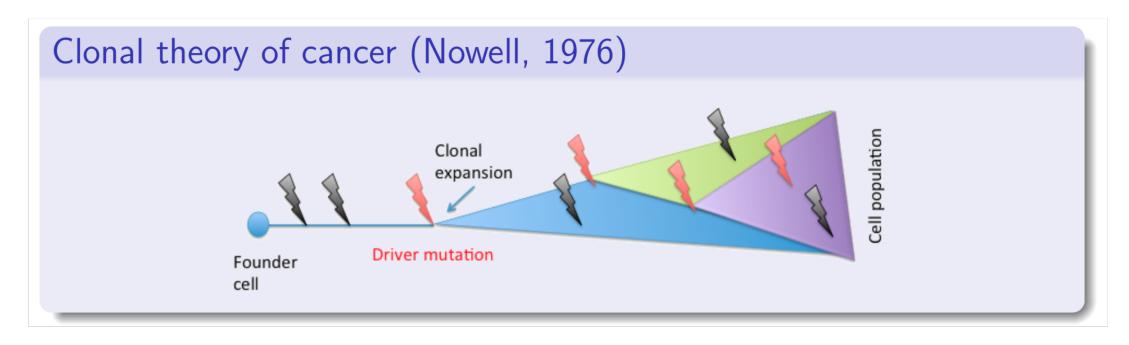
1

Characters only have two possible states

Possible Encoding: 0 : not-mutated 1 : mutated Possible Encoding: 0 : no wings 1 : wings

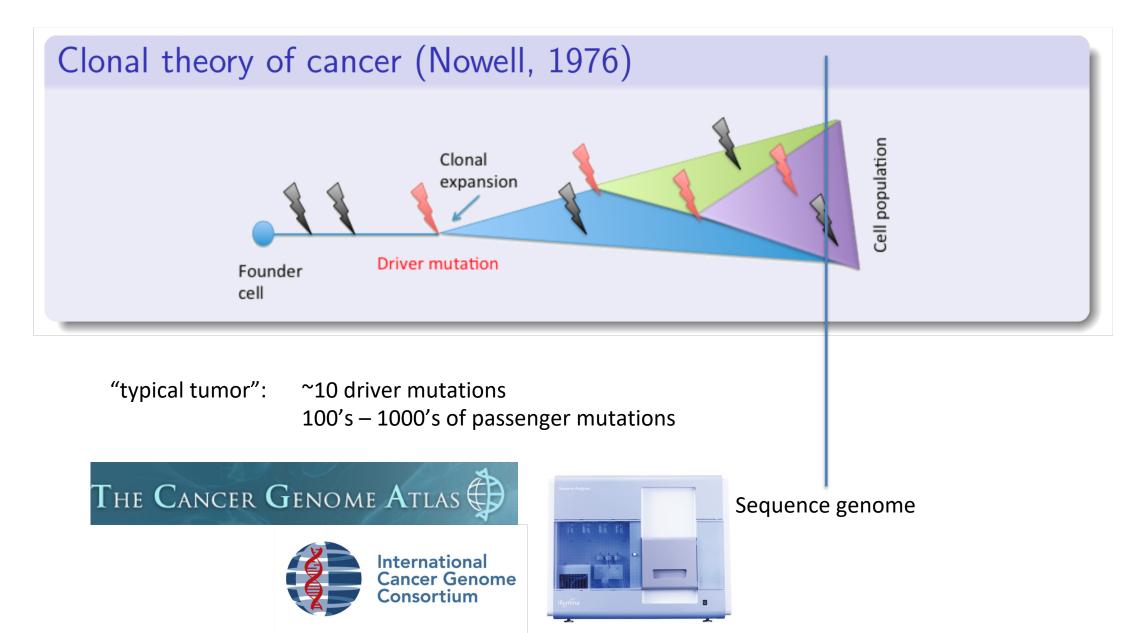
Question: Given *n* binary characters, what is the smallest parsimony score?

Somatic Mutations and Cancer



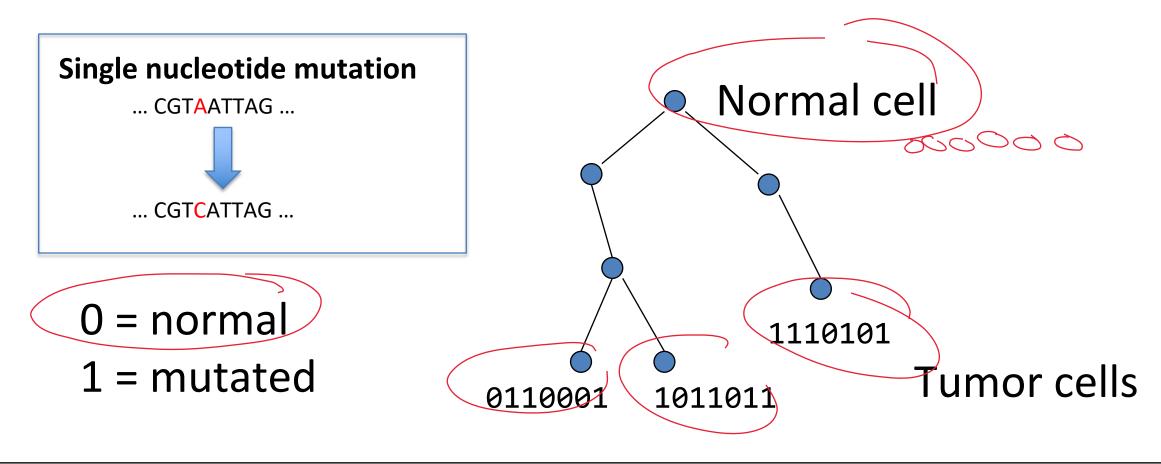
"typical tumor": ~10 driver mutations 100's – 1000's of passenger mutations

Somatic Mutations and Cancer



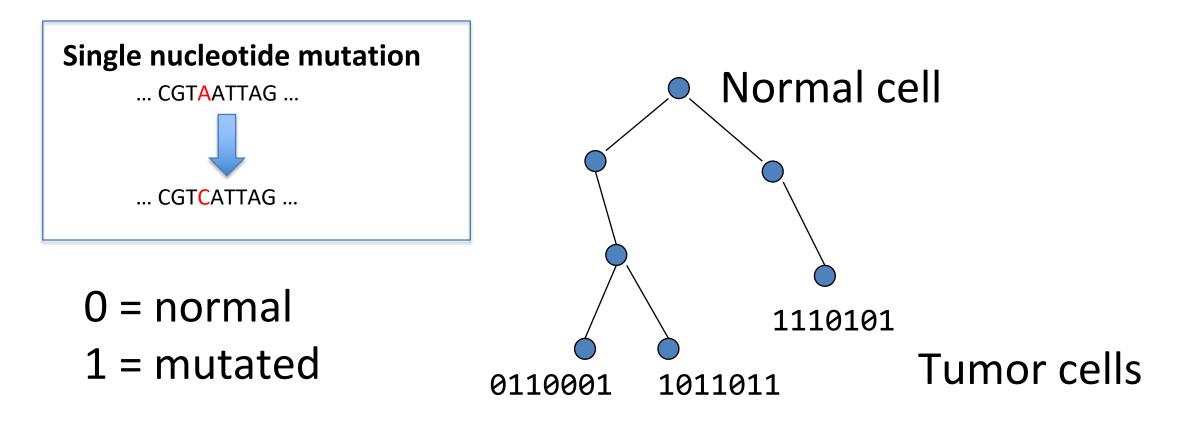
37

Progression of Somatic Mutations



Root is the normal, founder cell and leaves are cells in tumor.

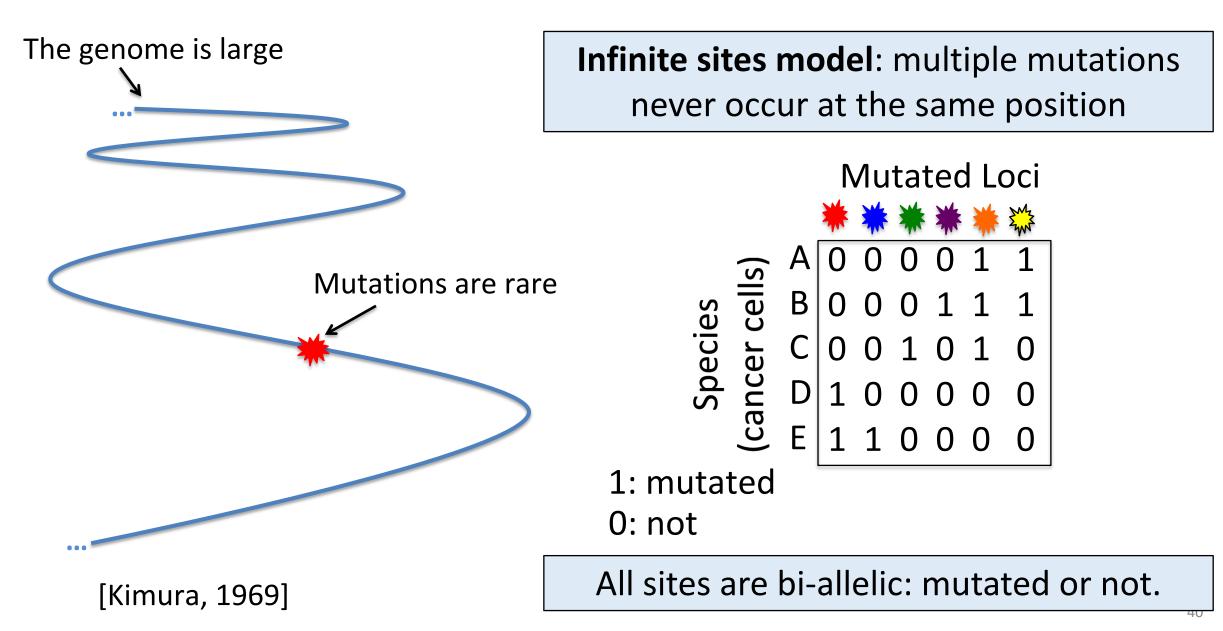
Progression of Somatic Mutations



Root is the normal, founder cell and leaves are cells in tumor.

Infinite sites assumption: each locus mutates only once.

Infinite Sites Model



Two-state Perfect Phylogeny

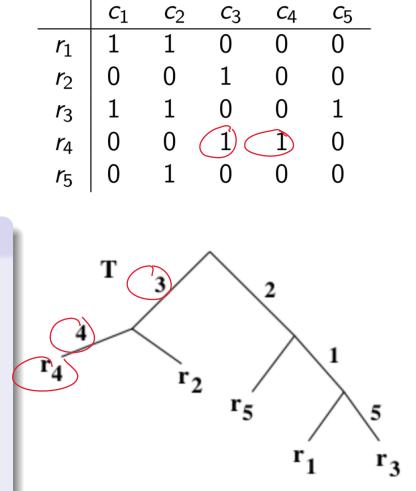
Matrix $M \in \{0, 1\}^{n \times m}$ has n taxa and m characters

Taxon f has state 1 for character c
⇔ f possesses character c

Definition

A perfect phylogeny for M is a rooted tree T with n leaves such that:

- Each taxon labels only one leaf
- Each character labels only one edge
- Character possessed by a taxon are on unique path to root

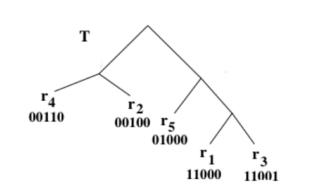


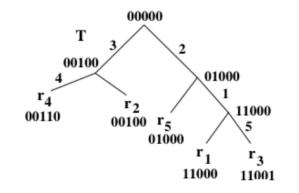
Root node is all zero ancestor

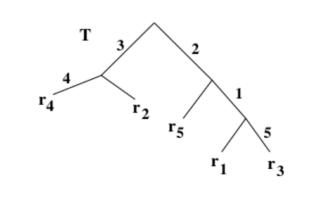
42

Two-state Perfect Phylogeny – Alternative Definitions

- Each taxon labels exactly one leaf
- 2 Each character labels exactly one edge
- One of the second se
 - Each taxon labels exactly one leaf
 - 2 Each node is labeled by $\{0,1\}^m$
 - Nodes labeled with state *i* for character *c* form a connected subtree
- Each taxon labels exactly one leaf
- 2 $T_c(i)$ is smallest subtree connecting all leaves labeled with state *i* for character *c*
- 3 $T_c(0)$ and $T_c(1)$ are disjoint for all c







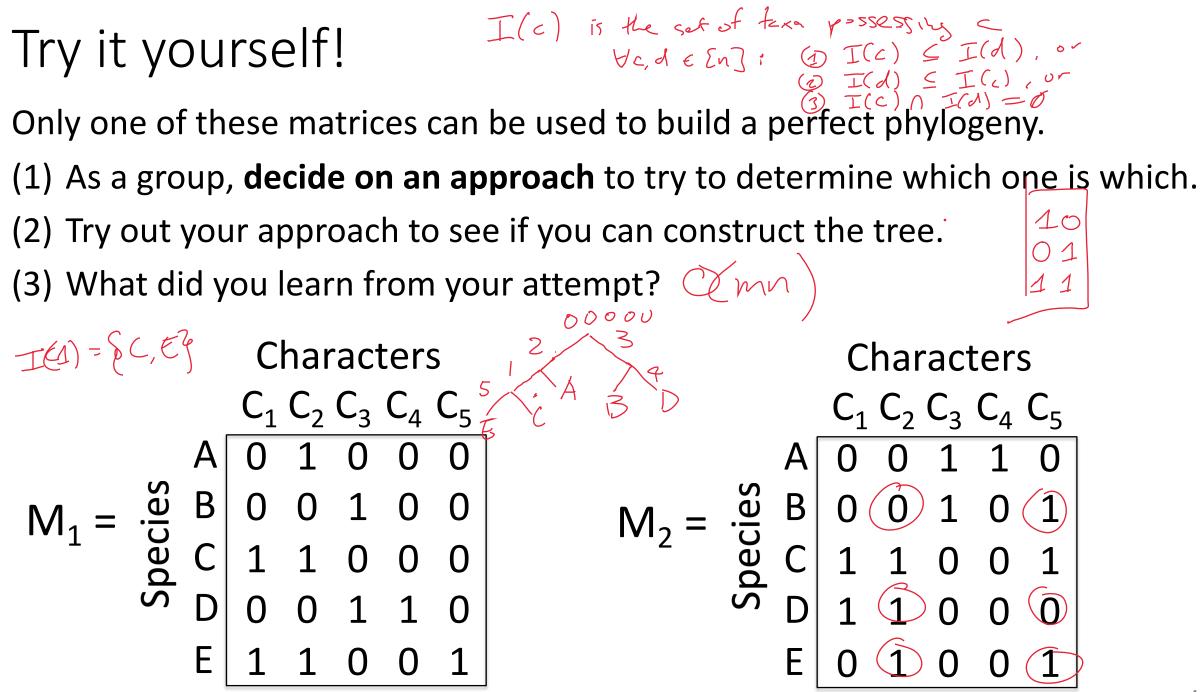
Two-state Perfect Phylogeny Problem

Input:

		<i>C</i> 1	<i>c</i> ₂	<i>C</i> 3	<i>C</i> 4	<i>C</i> 5
Matrix $M \in \{0,1\}^{n imes m}$ has n taxa and	r_1	1	1	0	0	0
<i>m</i> characters	<i>r</i> ₂	0	0	1	0	0
Taxon f has state 1 for character c	<i>r</i> ₃	1	1	0	0	1
$\Leftrightarrow f$ possesses character c	<i>r</i> 4	0	0	1	1	0
	<i>r</i> 5	0	1	0	0	0

Problem

Given $M \in \{0,1\}^{n \times m}$ does M have a perfect phylogeny?



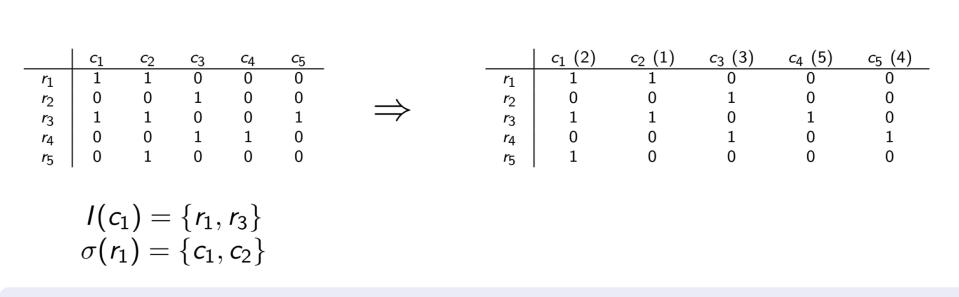
The Perfect Phylogeny Problem – Preliminaries

Problem

Given $M \in \{0,1\}^{n \times m}$ does M have a perfect phylogeny?

Definition

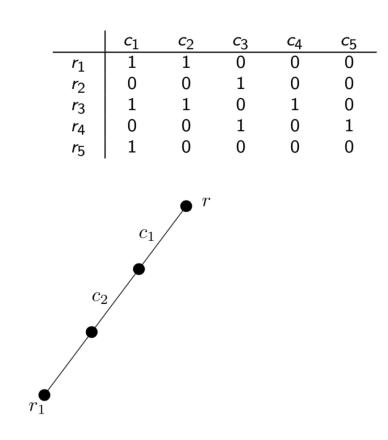
I(c) is the set of taxa that possess character c; and $\sigma(f)$ is the set of characters possessed by taxon f.



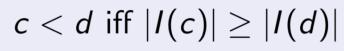
Sort columns of M s.t. c < d iff $|I(c)| \ge |I(d)|$. Break ties arbitrarily.

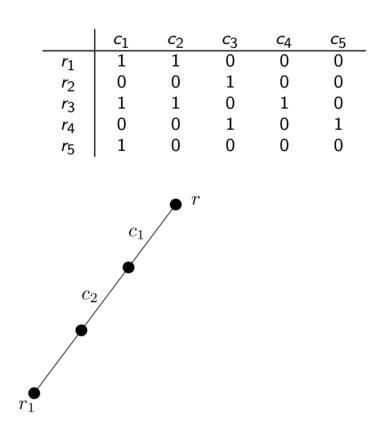
- Consider rows of *M* iteratively
 - T_i is tree of first *i* rows of *M*
- T_1 is a path graph
 - Terminal nodes r and 1
 - $|\sigma(1)| + 1$ edges labeled by $\sigma(1)$

c < d iff $|I(c)| \geq |I(d)|$



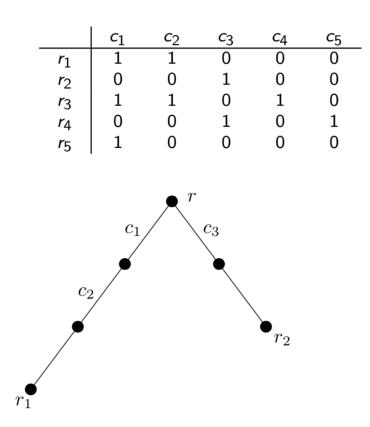
- Consider rows of *M* iteratively
 - T_i is tree of first *i* rows of *M*
- T_1 is a path graph
 - Terminal nodes r and 1
 - $|\sigma(1)| + 1$ edges labeled by $\sigma(1)$
- T_{i+1} is a supertree of T_i
 - Let v be last node on walk from r matching characters σ(i + 1)
 - **\star** Character *d* is the last match
 - ★ Unmatched characters $\tau(i+1)$





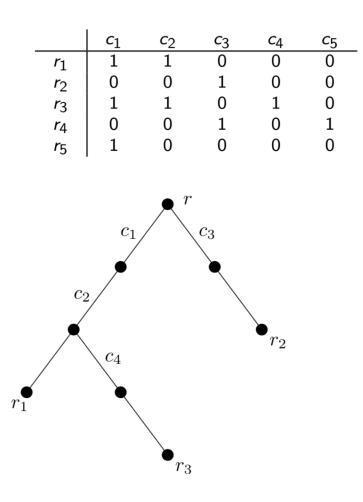
- Consider rows of *M* iteratively
 - T_i is tree of first *i* rows of *M*
- T_1 is a path graph
 - Terminal nodes r and 1
 - $|\sigma(1)| + 1$ edges labeled by $\sigma(1)$
- T_{i+1} is a supertree of T_i
 - Let v be last node on walk from r matching characters σ(i + 1)
 - **\star** Character *d* is the last match
 - ★ Unmatched characters $\tau(i+1)$
 - Extend T_i with path Π
 - ★ Π has terminals v and i+1
 - ★ Π has $|\tau(i+1)| + 1$ edges labeled by $\tau(i+1)$

c < d iff $|I(c)| \ge |I(d)|$



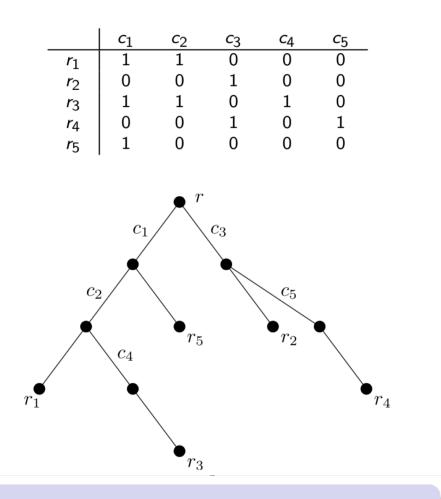
- Consider rows of *M* iteratively
 - T_i is tree of first *i* rows of *M*
- T_1 is a path graph
 - Terminal nodes r and 1
 - $|\sigma(1)| + 1$ edges labeled by $\sigma(1)$
- T_{i+1} is a supertree of T_i
 - Let v be last node on walk from r matching characters σ(i + 1)
 - **\star** Character *d* is the last match
 - ★ Unmatched characters $\tau(i+1)$
 - Extend T_i with path Π
 - ★ Π has terminals v and i+1
 - ★ Π has $|\tau(i+1)| + 1$ edges labeled by $\tau(i+1)$

c < d iff $|I(c)| \ge |I(d)|$



- Consider rows of *M* iteratively
 - T_i is tree of first *i* rows of *M*
- T_1 is a path graph
 - Terminal nodes r and 1
 - $|\sigma(1)| + 1$ edges labeled by $\sigma(1)$
- T_{i+1} is a supertree of T_i
 - Let v be last node on walk from r matching characters σ(i + 1)
 - **\star** Character *d* is the last match
 - ★ Unmatched characters $\tau(i+1)$
 - Extend T_i with path Π
 - ★ Π has terminals v and i+1
 - ★ Π has $|\tau(i+1)| + 1$ edges labeled by $\tau(i+1)$

c < d iff $|I(c)| \ge |I(d)|$



Lemma

Let $M_i \in 0, 1^{i \times m}$ be a submatrix of M. If M is conflict-free then T_i is a perfect phylogeny for M_i .

Outline

- Recap character-based phylogeny
- Application of small phylogeny maximum parsimony problem to cancer
- Compatibility

Reading:

• Lecture notes

HW 3 due Oct 29 by 11:59pm