CS 466 Introduction to Bioinformatics Lecture 15

Mohammed El-Kebir

October 29, 2018

Course Announcements

HW 3 due Oct 29 by 11:59pm

Office hour after class in SC 3216

Outline

- Recap character-based phylogeny
- Application of small phylogeny maximum parsimony problem to cancer
- Compatibility

Reading:

- Lecture notes

Character-Based Tree Reconstruction

- Characters may be morphological features
- Shape of beak \{generalist, insect catching, ...\}
- Number of legs $\{2,3,4, .$.
- Hibernation \{yes, no\}
- Character may be nucleotides/amino acids
- $\{\mathrm{A}, \mathrm{T}, \mathrm{C}, \mathrm{G}\}$
- 20 amino acids
- Values of a character are called states
- We assume discrete states

Character-Based Phylogeny Reconstruction

Input characters

Output optimal tree

Question: What is optimal?

Want: Optimization criterion

Question: How to optimize this criterion?

Want: Algorithm

Character-Based Phylogeny Reconstruction: Criterion

(a) Parsimony Score $=3$

(b) Parsimony Score $=2$

Parsimony: minimize number of changes on edges of tree

Again, a Small and a Large Problem

Small Maximum Parsimony Phylogeny Problem:

Given $m \times n$ matrix $A=\left[a_{i, j}\right]$ and tree T with m leaves, find assignment of character states to each internal vertex of T with minimum parsimony score.

Large Maximum Parsimony Phylogeny Problem:

Given $m \times n$ matrix $A=\left[a_{i, j}\right]$, find a tree T with m leaves labeled according to A and an assignment of character states to each internal vertex of T with minimum parsimony score.

Question: Are both problems easy (i.e. in P)?

Small Maximum Parsimony Phylogeny Problem

Key observations: (1) Characters can be solved independently. (2) Optimal substructure in subtrees.

Recurrence for Small Maximum Parsimony Problem

Small Maximum Parsimony Phylogeny Problem:

Given rooted tree T whose leaves are labeled by $\sigma: L(T) \rightarrow \Sigma$, find assignment of states to each internal vertex of T with minimum parsimony score.

Let $\mu(v, s)$ be the minimum number of mutations in the subtree rooted at v when assigning state s to v.

$$
\begin{gathered}
c(s, t)=\left\{\begin{array}{ll}
0, & \text { if } s=t \\
1, & \text { if } s \neq t,
\end{array} \quad \text { Let } \delta(v) \text { be the set of children of } v .\right. \\
\mu(v, s)=\min \begin{cases}\infty, & \text { if } v \in L(T) \text { and } s \neq \sigma(v), \\
0, & \text { if } v \in L(T) \text { and } s=\sigma(v), \\
\sum_{w \in \delta(v)} \min _{t \in \Sigma}\{c(s, t)+\mu(w, t)\}, & \text { if } v \notin L(T) .\end{cases}
\end{gathered}
$$

Filling out DP Table and Traceback

Outline

- Recap character-based phylogeny
- Application of small phylogeny maximum parsimony problem to cancer
- Compatibility

Reading:

- Lecture notes

Tumorigenesis: (i) Cell Mutation

Clonal Theory of Cancer
[Nowell, 1976]

Tumorigenesis: (i) Cell Mutation, (ii) Cell Division

Clonal Theory of Cancer
[Nowell, 1976]

Tumorigenesis: (i) Cell Division, (ii) Mutation \& (iii) Migration

Tumorigenesis: (i) Cell Division, (ii) Mutation \& (iii) Migration

Tumorigenesis: (i) Cell Division, (ii) Mutation \& (iii) Migration

Phylogenetic Tree \boldsymbol{T}

Tumorigenesis: (i) Cell Division, (ii) Mutation \& (iii) Migration

Phylogenetic Tree \boldsymbol{T}
Goal: Given phylogenetic tree \boldsymbol{T}, find parsimonious vertex labeling $\boldsymbol{\ell}$ with fewest migrations

Minimum Migration Analysis in Ovarian Cancer

McPherson et al. (2016). Divergent modes of clonal spread and intraperitoneal mixing in high-grade serous ovarian cancer. Nature Genetics.

- Instance of the maximum parsimony small phylogeny problem [Fitch, 1971; Sankoff, 1975]

Minimum Migration Analysis in Ovarian Cancer

McPherson et al. (2016). Divergent modes of clonal spread and intraperitoneal mixing in high-grade serous ovarian cancer. Nature Genetics.

- Instance of the maximum parsimony small phylogeny problem [Fitch, 1971; Sankoff, 1975]

$$
m=7 \text { anatomical sites }
$$

Minimum Migration History is Not Unique

- Enumerate all minimum-migration vertex labelings in the backtrace step

ApC Appendix
LFTB Left Fallopian Tube
LOv Left Ovary
RFTA Right Fallopian Tube
ROv Right Ovary
SBwl Small Bowel
Om Omentum

Comigrations: Simultaneous Migrations of Multiple Clones

- Multiple tumor cells migrate simultaneously through the blood stream [Cheung et al., 2016]
- Second objective: number $\boldsymbol{\gamma}$ of comigrations is the number of multi-edges in migration graph \boldsymbol{G}^{\dagger}
+ Not necessarily true in the case of directed cycles

Clone Tree \boldsymbol{T}

Comigrations: Simultaneous Migrations of Multiple Clones

- Multiple tumor cells migrate simultaneously through the blood stream [Cheung et al., 2016]
- Second objective: number $\boldsymbol{\gamma}$ of comigrations is the number of multi-edges in migration graph \boldsymbol{G}^{\dagger}

$$
\begin{gathered}
\boldsymbol{\mu}^{*}=13 \\
\boldsymbol{\gamma}=11
\end{gathered}
$$

ApC Appendix
LFTB Left Fallopian Tube
LOv Left Ovary
RFTA Right Fallopian Tube
ROv Right Ovary
SBwl Small Bowel
Om Omentum

$$
\begin{aligned}
\mu^{*} & =13 \\
\boldsymbol{y} & =7
\end{aligned}
$$

+ Not necessarily true in the case of directed cycles

Constrained Multi-objective Optimization Problem

Parsimonious Migration History (PMH): Given a phylogenetic tree T and a set $\mathcal{P} \subseteq\{\mathrm{S}, \mathrm{M}, \mathrm{R}\}$ of allowed migration patterns, find vertex labeling ℓ with minimum migration number $\mu^{*}(T)$ and smallest comigration number $\hat{\gamma}(T)$.

reseeding (R)

Results [El-Kebir, WABI 2018]

Parsimonious Migration History (PMH): Given a phylogenetic tree T and a set $\mathcal{P} \subseteq\{\mathrm{S}, \mathrm{M}, \mathrm{R}\}$ of allowed migration patterns, find vertex labeling ℓ with minimum migration number $\mu^{*}(T)$ and smallest comigration number $\hat{\gamma}(T)$.
single-source seeding (S)

Theorem 1: PMH is NP-hard when $\mathcal{P}=\{S\}$

Theorem 2: PMH is fixed parameter tractable in the number m of locations when $\mathcal{P}=\{S\}$

PMH is NP-hard when $\mathcal{P}=\{\mathrm{S}\}$

3-SAT: Given $\varphi=\bigwedge_{i=1}^{k}\left(y_{i, 1} \vee y_{i, 2} \vee y_{i, 3}\right)$ with variables $\left\{x_{1}, \ldots, x_{n}\right\}$ and k clauses, find $\phi:[n] \rightarrow\{0,1\}$ satisfying φ

$\Sigma=\left\{x_{1}, \ldots, x_{n}, \neg x_{1}, \ldots, \neg x_{n}, c_{1}, \ldots c_{k}, \perp\right\}$

PMH is NP-hard when $\mathcal{P}=\{\mathrm{S}\}$

3-SAT: Given $\varphi=\bigwedge_{i=1}^{k}\left(y_{i, 1} \vee y_{i, 2} \vee y_{i, 3}\right)$ with variables $\left\{x_{1}, \ldots, x_{n}\right\}$ and k clauses, find $\phi:[n] \rightarrow\{0,1\}$ satisfying φ

$$
\Sigma=\left\{x_{1}, \ldots, x_{n}, \neg x_{1}, \ldots, \neg x_{n}, c_{1}, \ldots c_{k}, \perp\right\}
$$

Three ideas:

1. Ensure that $(x, \neg x) \in E(G)$ or $(\neg x, x) \in E(G)$
2. Ensure that $\ell^{*}(r(T))=\perp$
3. Ensure that φ is satisfiable if and only if ℓ^{*} encodes a satisfying truth assignment

PMH is NP-hard when $\mathcal{P}=\{\mathrm{S}\}$

3-SAT: Given $\varphi=\bigwedge_{i=1}^{k}\left(y_{i, 1} \vee y_{i, 2} \vee y_{i, 3}\right)$ with variables $\left\{x_{1}, \ldots, x_{n}\right\}$ and k clauses, find $\phi:[n] \rightarrow\{0,1\}$ satisfying φ

$$
\Sigma=\left\{x_{1}, \ldots, x_{n}, \neg x_{1}, \ldots, \neg x_{n}, c_{1}, \ldots c_{k}, \perp\right\}
$$

Three ideas:

1. Ensure that $(x, \neg x) \in E(G)$ or $(\neg x, x) \in E(G)$
2. Ensure that $\ell^{*}(r(T))=\perp$
3. Ensure that φ is satisfiable if and only if ℓ^{*} encodes a satisfying truth assignment

Lemma: Let $B>10 k+1$ and $A>2 B n+27 k$.
Then, φ is satisfiable if and only if $\mu^{*}(T)=(B+1) n+25 k$

PMH is NP-hard when $\mathcal{P}=\{\mathrm{S}\}$

$$
\begin{gathered}
\varphi=\left(x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1}, \neg x_{2}, \neg x_{3}\right) \\
k=2, n=3 \\
B=10 k+2=22 \\
A=2 B n+27 \mathrm{k}+1=187
\end{gathered}
$$

$\Sigma=\left\{x_{1}, x_{2}, x_{3}, \neg x_{1}, \neg x_{2}, \neg x_{3}, c_{1}, c_{2}, \perp\right\}$

Lemma: Let $B>10 k+1$ and $A>2 B n+27 k$. Then, φ is satisfiable if and only if $\mu^{*}(T)=(B+1) n+25 k$

PMH is FPT in number m of locations when $\mathcal{P}=\{\mathrm{S}\}$

Phylogenetic tree T

Phylogenetic tree T

Lemma: If there exists labeling ℓ consistent with \widehat{G} then

$$
\frac{d_{T}(u, v) \geq d_{\hat{G}}\left(\operatorname{lca}_{\hat{G}}(u), \hat{\ell}(v)\right) \quad \forall u, v \in V(T) \text { such that } u \preceq_{T} v .}{\ell^{*}(v)= \begin{cases}\operatorname{LCA}_{\hat{G}}(r(T)), & \text { if } v=r(T), \tag{1}\\ \sigma\left(\ell^{*}(\pi(v)), \mathrm{LCA}_{\hat{G}}(v)\right), & \text { if } v \neq r(T),\end{cases} }
$$

where $\sigma(s, t)=s$ if $s=t$ and otherwise $\sigma(s, t)$ is the unique child of s that lies on the path from s to t in \hat{G}.

Lemma: If (1) holds then ℓ^{*} is a minimum migration labeling consistent with \widehat{G}.

PMH is FPT in number m of locations when $\mathcal{P}=\{\mathrm{S}\}$

Phylogenetic tree T

Phylogenetic tree T

Lemma: If there exists labeling ℓ consistent with \widehat{G} then

$$
\frac{d_{T}(u, v) \geq d_{\hat{G}}\left(\operatorname{lca}_{\hat{G}}(u), \hat{\ell}(v)\right)}{\forall v}, \begin{array}{ll}
\operatorname{LCA}_{\hat{G}}(r(T)), & \text { if } v=r(T), \\
\sigma\left(\ell^{*}(\pi(v)), \mathrm{LCA}_{\hat{G}}(v)\right), & \text { if } v \neq r(T),
\end{array}
$$

where $\sigma(s, t)=s$ if $s=t$ and otherwise $\sigma(s, t)$ is the unique child of s that lies on the path from s to t in \hat{G}.

Lemma: If (1) holds then ℓ^{*} is a minimum migration labeling consistent with \widehat{G}.

Simulations

Available on: https://github.com/elkebir-group/PMH-S

Outline

- Recap character-based phylogeny
- Application of small phylogeny maximum parsimony problem to cancer
- Compatibility

Reading:

- Lecture notes

Maximum Parsimony

Small Maximum Parsimony Phylogeny Problem:

Given $m \times n$ matrix $A=\left[a_{i, j}\right]$ and tree T with m leaves, find assignment of character states to each internal vertex of T with minimum parsimony score.

Large Maximum Parsimony Phylogeny Problem:

Given $m \times n$ matrix $A=\left[a_{i, j}\right]$, find a tree T with m leaves labeled according to A and an assignment of character states to each internal vertex of T with minimum parsimony score.

Binary Characters

Characters

$\quad \mathrm{A}$$\stackrel{0}{0} \mathrm{~B}$$\stackrel{\otimes}{\sim}$$\stackrel{\sim}{\sim} \mathrm{C}$	1	2	3	4	5
	0	1	1	0	0
	0	0	1	1	0
	1	1	1	1	0
D	1	1	0	1	1

Characters only have two possible states

Possible Encoding:
$0:$ not-mutated
$1:$ mutated

Possible Encoding:
$0:$ no wings
$1:$ wings

Binary Characters

Coricuer a charader ${ }^{2}$
(1) Pa,

	1		2	3	4
5					
	A	0	1	1	0

Possible Encoding:
$0:$ not-mutated
$1:$ mutated

Possible Encoding:
$0:$ no wings
$1:$ wings

Question: Given n binary characters, what is the smallest parsimony score?

Somatic Mutations and Cancer

Clonal theory of cancer (Nowell, 1976)

[^0]
Somatic Mutations and Cancer

Progression of Somatic Mutations

Single nucleotide mutation

... CGTAATTAG ...

CGTCATTAG ...

0 = normal
1 = mutated

Root is the normal, founder cell and leaves are cells in tumor.

Progression of Somatic Mutations

$$
\begin{aligned}
& 0=\text { normal } \\
& 1=\text { mutated }
\end{aligned}
$$

Root is the normal, founder cell and leaves are cells in tumor.
Infinite sites assumption: each locus mutates only once.

Infinite Sites Model

Infinite sites model: multiple mutations never occur at the same position

Two-state Perfect Phylogeny

Matrix $M \in\{0,1\}^{n \times m}$ has n taxa and m characters

- Taxon f has state 1 for character c $\Leftrightarrow f$ possesses character c

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}
r_{1}	1	1	0	0	0
r_{2}	0	0	1	0	0
r_{3}	1	1	0	0	1
r_{4}	0	0	1	1	0
r_{5}	0	1	0	0	0

Definition

A perfect phylogeny for M is a rooted tree T with n leaves such that:
(1) Each taxon labels only one leaf
(2) Each character labels only one edge
(3) Character possessed by a taxon are on unique path to root

Two-state Perfect Phylogeny - Alternative Definitions

(1) Each taxon labels exactly one leaf
(2) Each character labels exactly one edge
(3) Character possessed by a taxon are on unique path to root

(1) Each taxon labels exactly one leaf
(2) Each node is labeled by $\{0,1\}^{m}$
(3) Nodes labeled with state i for character c form a connected subtree
(1) Each taxon labels exactly one leaf
(2) $T_{c}(i)$ is smallest subtree connecting all leaves labeled with state i for character c
(3) $T_{c}(0)$ and $T_{c}(1)$ are disjoint for all c

Two-state Perfect Phylogeny Problem

Input:

Matrix $M \in\{0,1\}^{n \times m}$ has n taxa and m characters

- Taxon f has state 1 for character c $\Leftrightarrow f$ possesses character c

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}
r_{1}	1	1	0	0	0
r_{2}	0	0	1	0	0
r_{3}	1	1	0	0	1
r_{4}	0	0	1	1	0
r_{5}	0	1	0	0	0

Problem

Given $M \in\{0,1\}^{n \times m}$ does M have a perfect phylogeny?

Try it yourself!

Only one of these matrices can be used to build a perfect phylogeny.
(1) As a group, decide on an approach to try to determine which one is which.
(2) Try out your approach to see if you can construct the tree.
(3) What did you learn from your attempt?

00000

$$
\begin{aligned}
& \mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3} \mathrm{C}_{4} \mathrm{C}_{5}
\end{aligned}
$$

Characters

$$
\begin{aligned}
& \text { Characters }
\end{aligned}
$$

The Perfect Phylogeny Problem - Preliminaries

Problem

Given $M \in\{0,1\}^{n \times m}$ does M have a perfect phylogeny?

Definition

$I(c)$ is the set of taxa that possess character c; and $\sigma(f)$ is the set of characters possessed by taxon f.

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}
r_{1}	1	1	0	0	0
r_{2}	0	0	1	0	0
r_{3}	1	1	0	0	1
r_{4}	0	0	1	1	0
r_{5}	0	1	0	0	0

$\Rightarrow \quad$| | | $c_{1}(2)$ | $c_{2}(1)$ | $c_{3}(3)$ | $c_{4}(5)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $c_{5}(4)$ | | | | | |
| | r_{1} | 1 | 1 | 0 | 0 |
| 0 | | | | | |
| r_{2} | 0 | 0 | 1 | 0 | 0 |
| | r_{3} | 1 | 1 | 0 | 1 |
| r_{4} | 0 | 0 | 1 | 0 | 1 |
| | r_{5} | 1 | 0 | 0 | 0 |
| | | | | | |

$$
\begin{aligned}
I\left(c_{1}\right) & =\left\{r_{1}, r_{3}\right\} \\
\sigma\left(r_{1}\right) & =\left\{c_{1}, c_{2}\right\}
\end{aligned}
$$

Sort columns of M s.t. $c<d$ iff $|I(c)| \geq|I(d)|$. Break ties arbitrarily.

- Consider rows of M iteratively
- T_{i} is tree of first i rows of M
- T_{1} is a path graph
- Terminal nodes r and 1
- $|\sigma(1)|+1$ edges labeled by $\sigma(1)$

$$
c<d \text { iff }|I(c)| \geq|I(d)|
$$

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}
r_{1}	1	1	0	0	0
r_{2}	0	0	1	0	0
r_{3}	1	1	0	1	0
r_{4}	0	0	1	0	1
r_{5}	1	0	0	0	0

- Consider rows of M iteratively

$$
c<d \text { iff }|I(c)| \geq|I(d)|
$$

- T_{i} is tree of first i rows of M
- T_{1} is a path graph
- Terminal nodes r and 1
- $|\sigma(1)|+1$ edges labeled by $\sigma(1)$
- T_{i+1} is a supertree of T_{i}
- Let v be last node on walk from r matching characters $\sigma(i+1)$
* Character d is the last match
\star Unmatched characters $\tau(i+1)$
- Consider rows of M iteratively
- T_{i} is tree of first i rows of M
- T_{1} is a path graph
- Terminal nodes r and 1
- $|\sigma(1)|+1$ edges labeled by $\sigma(1)$
- T_{i+1} is a supertree of T_{i}
- Let v be last node on walk from r matching characters $\sigma(i+1)$
\star Character d is the last match
* Unmatched characters $\tau(i+1)$
- Extend T_{i} with path Π
$\star \Pi$ has terminals v and $i+1$
$\star \Pi$ has $|\tau(i+1)|+1$ edges labeled by $\tau(i+1)$

$$
c<d \text { iff }|I(c)| \geq|I(d)|
$$

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}
r_{1}	1	1	0	0	0
r_{2}	0	0	1	0	0
r_{3}	1	1	0	1	0
r_{4}	0	0	1	0	1
r_{5}	1	0	0	0	0

- Consider rows of M iteratively

$$
c<d \text { iff }|I(c)| \geq|I(d)|
$$

- T_{i} is tree of first i rows of M
- T_{1} is a path graph
- Terminal nodes r and 1
- $|\sigma(1)|+1$ edges labeled by $\sigma(1)$
- T_{i+1} is a supertree of T_{i}
- Let v be last node on walk from r matching characters $\sigma(i+1)$
\star Character d is the last match
* Unmatched characters $\tau(i+1)$
- Extend T_{i} with path Π
$\star \Pi$ has terminals v and $i+1$
$\star \Pi$ has $|\tau(i+1)|+1$ edges labeled by $\tau(i+1)$

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}
r_{1}	1	1	0	0	0
r_{2}	0	0	1	0	0
r_{3}	1	1	0	1	0
r_{4}	0	0	1	0	1
r_{5}	1	0	0	0	0

- Consider rows of M iteratively
- T_{i} is tree of first i rows of M

$$
c<d \text { iff }|I(c)| \geq|I(d)|
$$

- T_{1} is a path graph
- Terminal nodes r and 1
- $|\sigma(1)|+1$ edges labeled by $\sigma(1)$
- T_{i+1} is a supertree of T_{i}
- Let v be last node on walk from r matching characters $\sigma(i+1)$
\star Character d is the last match
* Unmatched characters $\tau(i+1)$
- Extend T_{i} with path Π
$\star \Pi$ has terminals v and $i+1$
$\star \Pi$ has $|\tau(i+1)|+1$ edges labeled by $\tau(i+1)$

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}
r_{1}	1	1	0	0	0
r_{2}	0	0	1	0	0
r_{3}	1	1	0	1	0
r_{4}	0	0	1	0	1
r_{5}	1	0	0	0	0

Lemma

Let $M_{i} \in 0,1^{i \times m}$ be a submatrix of M. If M is conflict-free then T_{i} is a perfect phylogeny for M_{i}.

Outline

- Recap character-based phylogeny
- Application of small phylogeny maximum parsimony problem to cancer
- Compatibility

Reading:

- Lecture notes

HW 3 due Oct 29 by 11:59pm

[^0]: "typical tumor": ~10 driver mutations
 100's - 1000's of passenger mutations

