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Course Announcements

2

HW 3 due Oct 29 by 11:59pm



Outline
• Recap additive distance
• Neighbor joining
• Character-based phylogeny (small)
• Application to cancer

Reading:
• Chapters 10.2, 10.5-10.8, 10.9 in Jones and Pevzner
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Hierarchical Clustering
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1. Hierarchical Clustering (D , n)
2. Form n clusters each with one element
3. Construct a graph T by assigning one vertex to each cluster
4. while there is more than one cluster
5. Find the two closest clusters C1 and C2
6. Merge C1 and C2 into new cluster C with |C1| +|C2| elements
7. Compute distance from C to all other clusters
8. Add a new vertex C to T and connect to vertices C1 and C2
9. Remove rows and columns of D corresponding to C1 and C2
10. Add a row and column to D corresponding to the new cluster C
11. return T

Definition of distance between clusters 
(or, linkage criterion) affects clustering!

Organize elements into a tree s.t.:
• Leaves are elements
• Paths between leaves represent 

pairwise element distance
• Similar elements lie within same 

subtrees



Additive Distance Matrices
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NON-ADDITIVE 
otherwise

Matrix D is 
ADDITIVE if there 
exists a tree T with 
dij(T) = Dij

This is a constructive definition



A Small and a Large Problem
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Small Additive Distance Phylogeny Problem:
Given ! × ! distance matrix # = [&',)] and unweighted tree + with 

! leaves, determine edge weights such that &, -, . = &',)

Large Additive Distance Phylogeny Problem:
Given ! × ! distance matrix # = [&',)], find tree + with 
! leaves and edge weights such that &, -, . = &',)

Both problems can be solved in polynomial time



Small Additive Distance Problem
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1. Find neighboring leaves ! and " with parent #
2. Remove the rows and columns of ! and "
3. Add a new row and column corresponding to #, where the 

distance from # to any other leaf $ is computed as 

%&,( = *+,,-*.,,/*+,.
0

4. Repeat steps 1-3 until tree has only two vertices



Additive Phylogeny
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Additive Distance Matrix
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Theorem: Let ! be an " × " matrix. The following statements are 
equivalent.
1. Matrix ! is additive.
2. There exists a unique tree $ (modulo isomorphism) s.t. %&,( =
%*(,, -) for all ,, - ∈ "0.

3. Four point condition holds for every quartet ,, -, 1, 2 ∈ " 3.

Four point condition of matrix ! = [%&,(]:
Every four leaves (quartet) can be labeled as (,, -, 1, 2) such that

%&,( + %7,8 ≤ %&,7 + %(,8 = %&,8 + %(,7



Outline
• Recap additive distance
• Neighbor joining
• Character-based phylogeny (small)
• Application to cancer

Reading:
• Chapters 10.2, 10.5-10.8, 10.9 in Jones and Pevzner
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Distance Based Phylogeny Problem
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Large Additive Distance Phylogeny Problem:
Given ! × ! matrix # = [&',)], find tree + with ! leaves and
edge weights such that max

',) ∈ 0 1 |&3 4, 5 − &',)| is minimum.

Equivalently, find additive matrix #′ closest to input matrix #



Neighbor Joining Algorithm (Saitou and Nei 1987)
• Constructs binary unrooted trees.
• Recall: leaves ! and " are neighbors 

if they have a common parent
• Recall: closest leaves are not 

necessarily neighbors
• NJ: Find pair of leaves that are 

“close” to each other but “far” from 
other leaves
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Two advantages: (1) reproduces correct tree for additive matrix, 
and (2) otherwise gives good approximation of correct tree 



Distance Trees as Hierarchical Clustering
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Distance Trees as Hierarchical Clustering
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1. Hierarchical Clustering (D , n)
2. Form n clusters each with one element
3. Construct a graph T by assigning one vertex to each cluster
4. while there is more than one cluster
5. Find the two closest clusters C1 and C2
6. Merge C1 and C2 into new cluster C with |C1| +|C2| elements
7. Compute distance from C to all other clusters
8. Add a new vertex C to T and connect to vertices C1 and C2
9. Remove rows and columns of D corresponding to C1 and C2
10. Add a row and column to D corresponding to the new cluster C
11. return T

Selection criterion: distance 
between clusters affects 

clustering!

Distance Trees as Hierarchical Clustering
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Neighbor Joining: Selection Criterion

melkebir
Pencil

melkebir
Pencil



Neighboring Joining: Algorithm
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Neighboring Joining: Example



Advantages of Neighbor Joining
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Theorem: Let ! be an " × " matrix. If matrix ! is additive 
then neighbor joining produces the unique phylogenetic 
tree $ (modulo isomorphism) such that %&,( = %*(,, -) for all 
,, - ∈ "0.

Theorem: Let ! be an " × " matrix. If there exists an additive 
matrix !′ such that ! − !3 4 ≤ 0.5 then neighbor joining 
applied to ! reconstructs the unique tree $ (modulo 
isomorphism) such that %&,(3 = %*(,, -) for all ,, - ∈ "0.

Atteson 1991
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Neighbor Joining in Practice
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Outline
• Recap additive distance
• Neighbor joining
• Character-based phylogeny (small)
• Application to cancer

Reading:
• Chapters 10.2, 10.5-10.8, 10.9 in Jones and Pevzner

21



Character-Based Tree Reconstruction
• Characters may be morphological features
• Shape of beak {generalist, insect catching, ...} 
• Number of legs {2,3,4, ..}
• Hibernation {yes, no}

• Character may be nucleotides/amino acids
• {A, T, C, G}
• 20 amino acids

• Values of a character are called states
• We assume discrete states
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Character-Based Phylogeny Reconstruction
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Input
characters

Output
optimal tree

Question: What is optimal?

Want: Optimization criterion



Character-Based Phylogeny Reconstruction
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Input
characters

Output
optimal tree

Question: What is optimal?

Want: Optimization criterion

Question: How to optimize this criterion?

Want: Algorithm



Character-Based Phylogeny Reconstruction: Input
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Characters / states State 1 State 2
Mouth Smile Frown
Eyebrows Normal Pointed

melkebir
Pencil



Character-Based Phylogeny Reconstruction: Criterion
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Question: Which tree is better?

melkebir
Pencil
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Character-Based Phylogeny Reconstruction: Criterion
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Parsimony: minimize number of changes on edges of tree



Why Parsimony?

• Ockham’s razor: “simplest” explanation 
for data
• Assumes that observed character

differences resulted from the fewest 
possible mutations
• Seeks tree with the lowest parsimony 

score, i.e. the sum of all (costs of) 
mutations in the tree.
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Again, a Small and a Large Problem
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Small Maximum Parsimony Phylogeny Problem:
Given ! × # matrix $ = ['(,*] and tree , with ! leaves, find 

assignment of character states to each internal vertex of ,
with minimum parsimony score.

Large Additive Distance Phylogeny Problem:
Given ! × # matrix $ = ['(,*], find a tree , with ! leaves labeled 

according to $ and an assignment of character states to each internal 
vertex of , with minimum parsimony score.

Question: Are both problems easy (i.e. in P)?

melkebir
Pencil



Again, a Small and a Large Problem
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Small Maximum Parsimony Phylogeny Problem:
Given ! × # matrix $ = ['(,*] and tree , with ! leaves, find 

assignment of character states to each internal vertex of ,
with minimum parsimony score.

Large Additive Distance Phylogeny Problem:
Given ! × # matrix $ = ['(,*], find a tree , with ! leaves labeled 

according to $ and an assignment of character states to each internal 
vertex of , with minimum parsimony score.

Question: Are both problems easy (i.e. in P)?



Small Maximum Parsimony Phylogeny Problem

31

Question: There are ! = 4 characters in the $ = 2 taxa (leaves). 
Can we solve each character separately? 

melkebir
Pencil



Recurrence
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Solving the Recurrence
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Example

34

melkebir
Pencil



Sankoff Algorithm (Sankoff 1975)
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Small Maximum Parsimony Phylogeny Problem:
Given ! × # matrix $ = ['(,*] and tree , with ! leaves, find 

assignment of character states to each internal vertex of ,
with minimum parsimony score.

- ., /



Outline
• Recap additive distance
• Neighbor joining
• Character-based phylogeny (small)
• Application to cancer

Reading:
• Chapters 10.2, 10.5-10.8, 10.9 in Jones and Pevzner
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Tumorigenesis: (i) Cell Division, (ii) Mutation & (iii) Migration

3

tim
e

primary tumor P metastasis M1metastasis M2

mutation

migration

Cell Tree



Tumorigenesis: (i) Cell Division, (ii) Mutation & (iii) Migration
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e
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Tumorigenesis: (i) Cell Division, (ii) Mutation & (iii) Migration

3

tim
e

primary tumor P metastasis M1metastasis M2

mutation

migration

Cell Tree Phylogenetic Tree T

Goal: Given phylogenetic tree T, find parsimonious vertex labeling ℓ with fewest migrations

Vertex 
labeling ℓ

Slatkin, M. and Maddison, W. P. (1989). A cladistic measure of gene flow inferred from the phylogenies of alleles. Genetics, 123(3), 603–613.
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Minimum Migration Analysis in Ovarian Cancer
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McPherson et al. (2016). Divergent modes of clonal spread and intraperitoneal mixing in high-grade serous 
ovarian cancer. Nature Genetics.
• Instance of the maximum parsimony small phylogeny problem [Fitch, 1971; Sankoff, 1975]
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Minimum Migration Analysis in Ovarian Cancer

I1
ROv

G1
ROv

E1
ROv

C1
SBwl

H2
LOv

H1
ROv

F1
ROv

D1
LOv

B5
ApC

B4
LOv

B3
LFTB

B2
SBwl

B1
Om

A6
RFTA

A5
ApC

A4
LOv

A3
LFTB

A2
SBwl

A1
Om

H

F

D

B

A

m = 7 anatomical sites

ApC

Appendix

Om

Omemtum

SBwl

Small Bowel

ROv

Right Ovary LOv

Left Ovary

LFTB

Left Fallopian 

Tube

RFTA

Right Fallopian

Tube

ROv

RFTA Om LOv LFTB ApC

SBwl

μ* = 13

Migration 

graph G

McPherson et al. (2016). Divergent modes of clonal spread and intraperitoneal mixing in high-grade serous 

ovarian cancer. Nature Genetics.

• Instance of the maximum parsimony small phylogeny problem [Fitch, 1971; Sankoff, 1975]



Minimum Migration History is Not Unique

5
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• Enumerate all minimum-migration vertex labelings in the backtrace step
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• Multiple tumor cells migrate simultaneously through the blood stream [Cheung et al., 2016]
• Second objective: number γ of comigrations is the number of multi-edges in migration graph G †
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Comigrations: Simultaneous Migrations of Multiple Clones

† Not necessarily true in the case of directed cycles
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Comigrations: Simultaneous Migrations of Multiple Clones
• Multiple tumor cells migrate simultaneously through the blood stream [Cheung et al., 2016]
• Second objective: number γ of comigrations is the number of multi-edges in migration graph G †

† Not necessarily true in the case of directed cyclesμ* = 13
γ = 11
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Parsimonious Migration History (PMH): Given a phylogenetic tree ! and a set " ⊆ S,M, R
of allowed migration patterns, find vertex labeling ℓ with minimum migration number )∗(!)
and smallest comigration number -.(!).

Constrained Multi-objective Optimization Problem

8
El-Kebir, M., Satas, G., & Raphael, B. J. (2018). Inferring parsimonious migration histories for metastatic cancers. Nature Genetics, 50(5), 718–726.

a b cP = {S,M}
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(µ⇤, �̂) = (4, 4)

single-source seeding (S) multi-source seeding (M) reseeding (R)



Results [El-Kebir, WABI 2018]
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Theorem 1: PMH is NP-hard when ! = S

Theorem 2: PMH is fixed parameter 
tractable in the number $ of locations 
when ! = S

Parsimonious Migration History (PMH): Given a phylogenetic tree % and a set ! ⊆ S,M, R
of allowed migration patterns, find vertex labeling ℓ with minimum migration number +∗(%)
and smallest comigration number /0(%).
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(µ⇤, �̂) = (4, 4)

single-source seeding (S)



PMH is NP-hard when ! = S
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3-SAT: Given φ = ⋀&'() (+&,( ∨ +&,. ∨ +&,/)
with variables {2(, … , 24} and 6 clauses, 
find 7 ∶ 9 → 0,1 satisfying φ Σ = {2(,… , 24, ¬2(, … ,¬24, ?(, … ?) , ⊥}

x1

¬x1 ¬x2

¬x3

x3

x2

?

c1 c2



PMH is NP-hard when ! = S

Three ideas:
1. Ensure that $,¬$ ∈ ((*)

or ¬$, $ ∈ ((*)
2. Ensure that ℓ∗ . / = ⊥
3. Ensure that φ is satisfiable if 

and only if ℓ∗ encodes a 
satisfying truth assignment
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. . . . . .
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3-SAT: Given φ = ⋀3456 (73,5 ∨ 73,9 ∨ 73,:)
with variables {$5, … , $=} and ? clauses, 
find @ ∶ B → 0,1 satisfying φ Σ = {$5,… , $=, ¬$5, … ,¬$=, G5, … G6 , ⊥}

x1

¬x1 ¬x2

¬x3

x3

x2

?

c1 c2



Lemma: Let ! > 10% + 1 and ' > 2!) + 27%.
Then, φ is satisfiable if and only if ,∗ . = ! + 1 ) + 25%

PMH is NP-hard when 1 = S

Three ideas:
1. Ensure that 3,¬3 ∈ 7(9)

or ¬3, 3 ∈ 7(9)

2. Ensure that ℓ∗ < . = ⊥

3. Ensure that φ is satisfiable if 
and only if ℓ∗ encodes a 
satisfying truth assignment
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B
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Lemma: Let ! > 10% + 1 and ' > 2!) + 27%.
Then, φ is satisfiable if and only if ,∗ . = ! + 1 ) + 25%
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Σ = {56, 58, 59, ¬56, ¬58, ¬59, ;6, ;8, ⊥}

x1

¬x1 ¬x2

¬x3

x3

x2

?

c1 c2

3 3

✓

B + 5 B + 8 B + 5

9 11 9

φ = 56 ∨ 58 ∨ ¬59 ∧ (¬56, ¬58, ¬59)
% = 2, ) = 3

! = 10% + 2 = 22
' = 2!) + 27k + 1 = 187

,∗ . = ! + 1 ) + 25%
= 23 ∗ 3 + 50 ∗ 2 = 119



Lemma: If (1) holds then ℓ∗ is a minimum migration labeling consistent with #$.

Lemma: If there exists labeling ℓ consistent with #$ then
dT (u, v) � dĜ(lcaĜ(u),

ˆ̀(v)) 8u, v 2 V (T ) such that u �T v. (1)

PMH is FPT in number % of locations when & = S
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Lemma: If (1) holds then ℓ∗ is a minimum migration labeling consistent with #$.

Lemma: If there exists labeling ℓ consistent with #$ then
dT (u, v) � dĜ(lcaĜ(u),

ˆ̀(v)) 8u, v 2 V (T ) such that u �T v. (1)

PMH is FPT in number % of locations when & = S
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Simulations
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Available on: https://github.com/elkebir-group/PMH-S



Outline
• Recap additive distance
• Neighbor joining
• Character-based phylogeny (small)
• Application to cancer

Reading:
• Chapters 10.2, 10.5-10.8, 10.9 in Jones and Pevzner
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