CS 466 Introduction to Bioinformatics Lecture 13

Mohammed El-Kebir

October 22, 2018

Course Announcements

HW 3 will be released today - due Oct 29 by 11:59pm

Project proposal due on Nov. 14
 (Motivation, Datasets/papers, Planned method/experiments, Timeline)

Project report due on Dec. 14

Outline

- Introduction
- Hierarchical clustering
- Additive distance phylogeny
- Four point condition
- Neighbor joining

Reading:

- Chapter 10.2 and 10.5-10.8 in Jones and Pevzner

Alignments and Trees

Tree / star alignment

Tree topology represents similarity/distance between sequences
Biological sequences typically come from the present

Evolutionary Studies and Phylogenies

- Since Darwin's book (1859) until 1960s: Phylogeny reconstruction from anatomical features
- Subjective observations led to inconclusive/incorrect phylogenies

Evolutionary Studies and Phylogenies

- Subjective observations led to inconclusive/incorrect phylogenies

Example

- Giant pandas look like bears but have features that are unusual for bears and typical for racoons
- In 1985, Steven O'Brien and colleagues solved the giant panda classification problem using DNA sequences and algorithms

Out of Africa Hypothesis

Vigilant, Stoneking, Harpending, Hawkes, and Wilson (1991)

Out of Africa Hypothesis claims that our most ancient ancestor lived in Africa roughly 200,000 years ago

Evolutionary Tree of Humans

Evolutionary Tree of Species

Question: What are the evolutionary relationships between species?

Evolutionary Tree of a Tumor

Primary tumor
Metastasis 1

Normal cell

Founder clone

Subclones

https://www.sciencedaily.com/releases/2016/09/160909223504.htm

Phylogenetic Tree Reconstruction

Mouse:
Gorilla:
Chimpanzee: CCTGTGAGGTAGCAAACGA
Human:

ACAGTGACGCCACACACGT
CCTGTGACGTAACAAACGA

CCTGTGAGGTAGCACACGA

	V_{1}	V_{2}	V_{3}	V_{4}
V_{1}	-			
V_{2}	.17	-		
V_{3}	.87	.28	-	
V_{4}	.59	.33	.62	-
Distance Table				

Phylogenetic Tree

Question: Given sequence data, how to reconstruct tree?

Outline

- Introduction
- Hierarchical clustering
- Additive distance phylogeny
- Four point condition
- Neighbor joining

Reading:

- Chapter 10.2 and 10.5-10.8 in Jones and Pevzner

Clustering

Given:

(1) $n \times n$ matrix $D=\left[d_{i, j}\right]$

Want:

(1) Homogeneity within clusters
(2) Separation between clusters

Good

Hierarchical Clustering

Organize elements into a tree such that:

- Leaves are elements
- Paths between leaves represent pairwise element distance
- Similar elements lie within same subtrees

Hierarchical Clustering

1. Hierarchical Clustering (\boldsymbol{D}, n)
2. Form n clusters each with one element
3. Construct a graph \boldsymbol{T} by assigning one vertex to each cluster
4. while there is more than one cluster
5. Find the two closest clusters C_{1} and C_{2}
6. Merge C_{1} and C_{2} into new cluster C with $\left|C_{1}\right|+\left|C_{2}\right|$ elements
7. Compute distance from C to all other clusters
8. Add a new vertex \boldsymbol{C} to \boldsymbol{T} and connect to vertices C_{1} and C_{2}
9. Remove rows and columns of \boldsymbol{D} corresponding to C_{1} and C_{2}
10. Add a row and column to \boldsymbol{D} corresponding to the new cluster \boldsymbol{C}
11. return \boldsymbol{T}

Hierarchical Clustering

1. Hierarchical Clustering (\boldsymbol{D}, n)
2. Form n clusters each with one element
3. Construct a graph \boldsymbol{T} by assigning one vertex to each cluster
4. while there is more than one cluster
5. Find the two closest clusters C_{1} and C_{2}
6. Merge C_{1} and C_{2} into new cluster C with $\left|C_{1}\right|+\left|C_{2}\right|$ elements
7. Compute distance from C to all other clusters
8. Add a new vertex \boldsymbol{C} to \boldsymbol{T} and connect to vertices C_{1} and C_{2}
9. Remove rows and columns of \boldsymbol{D} corresponding to C_{1} and C_{2}
10. Add a row and column to \boldsymbol{D} corresponding to the new cluster \boldsymbol{C}
11. return \boldsymbol{T}

Hierarchical Clustering

1. Hierarchical Clustering (\boldsymbol{D}, n)
2. Form n clusters each with one element
3. Construct a graph \boldsymbol{T} by assigning one vertex to each cluster
4. while there is more than one cluster
5. Find the two closest clusters C_{1} and C_{2}
6. Merge C_{1} and C_{2} into new cluster C with $\left|C_{1}\right|+\left|C_{2}\right|$ elements
7. Compute distance from \boldsymbol{C} to all other clusters
8. Add a new vertex \boldsymbol{C} to \boldsymbol{T} and connect to vertices C_{1} and C_{2}
9. Remove rows and columns of D corresponding to C_{1} and C_{2}
10. Add a row and column to \boldsymbol{D} corresponding to the new cluster \boldsymbol{C}
11. return T

Hierarchical Clustering

1. Hierarchical Clustering (\boldsymbol{D}, n)
2. Form n clusters each with one element
3. Construct a graph \boldsymbol{T} by assigning one vertex to each cluster
4. while there is more than one cluster
5. Find the two closest clusters C_{1} and C_{2}
6. Merge C_{1} and C_{2} into new cluster C with $\left|C_{1}\right|+\left|C_{2}\right|$ elements
7. Compute distance from \boldsymbol{C} to all other clusters
8. Add a new vertex \boldsymbol{C} to \boldsymbol{T} and connect to vertices C_{1} and C_{2}
9. Remove rows and columns of D corresponding to C_{1} and C_{2}
10. Add a row and column to \boldsymbol{D} corresponding to the new cluster \boldsymbol{C}
11. return \boldsymbol{T}

Hierarchical Clustering

1. Hierarchical Clustering (\boldsymbol{D}, n)
2. Form n clusters each with one element
3. Construct a graph \boldsymbol{T} by assigning one vertex to each cluster
4. while there is more than one cluster
5. Find the two closest clusters C_{1} and C_{2}
6. Merge C_{1} and C_{2} into new cluster C with $\left|C_{1}\right|+\left|C_{2}\right|$ elements
7. Compute distance from \boldsymbol{C} to all other clusters
8. Add a new vertex \boldsymbol{C} to \boldsymbol{T} and connect to vertices C_{1} and C_{2}
9. Remove rows and columns of D corresponding to C_{1} and C_{2}
10. Add a row and column to \boldsymbol{D} corresponding to the new cluster \boldsymbol{C}
11. return \boldsymbol{T}

Hierarchical Clustering

1. Hierarchical Clustering (\boldsymbol{D}, n)
$\left\{g_{1}, g_{2}, g_{3}, g_{4}, g_{5}, g_{6}, g_{7}, g_{8}, g_{9}, g_{10}\right\}$
2. Form n clusters each with one element
3. Construct a graph \boldsymbol{T} by assigning one vertex to each cluster
4. while there is more than one cluster
5. Find the two closest clusters C_{1} and C_{2}
6. Merge C_{1} and C_{2} into new cluster C with $\left|C_{1}\right|+\left|C_{2}\right|$ elements
7. Compute distance from \boldsymbol{C} to all other clusters
8. Add a new vertex \boldsymbol{C} to \boldsymbol{T} and connect to vertices C_{1} and C_{2}
9. Remove rows and columns of D corresponding to C_{1} and C_{2}
10. Add a row and column to \boldsymbol{D} corresponding to the new cluster \boldsymbol{C}
11. return \boldsymbol{T}

Definition of distance between clusters affects clustering!

Hierarchical Clustering - Linkage Criteria

Names	Formula						
Maximum or complete-linkage clustering	$\max \{d(a, b): a \in A, b \in B\}$.						
Minimum or single-linkage clustering	$\min \{d(a, b): a \in A, b \in B\}$.						
Mean or average linkage clustering, or UPGMA	$\frac{1}{\|A\| \cdot\|B\|} \sum_{a \in A} \sum_{b \in B} d(a, b)$.						
Centroid linkage clustering, or UPGMC	$\left\\|c_{s}-c_{t}\right\\|$ where c_{s} and c_{t} are the centroids of clusters s and t, respectively.						
Minimum energy clustering	$\frac{2}{n m} \sum_{i, j=1}^{n, m}\left\\|a_{i}-b_{j}\right\\|_{2}-\frac{1}{n^{2}} \sum_{i, j=1}^{n}\left\\|a_{i}-a_{j}\right\\|_{2}-\frac{1}{m^{2}} \sum_{i, j=1}^{m}\left\\|b_{i}-b_{j}\right\\|_{2}$						

https://en.wikipedia.org/wiki/Hierarchical_clustering\#Linkage_criteria

Outline

- Introduction
- Hierarchical clustering
- Additive distance phylogeny
- Four point condition
- Neighbor joining

Reading:

- Chapter 10.2 and 10.5-10.8 in Jones and Pevzner

Phylogenetic Tree Reconstruction

Mouse:
Gorilla:
Chimpanzee: CCTGTGAGGTAGCAAACGA
Human:

ACAGTGACGCCACACACGT
CCTGTGACGTAACAAACGA

CCTGTGAGGTAGCACACGA

	V_{1}	V_{2}	V_{3}	V_{4}
V_{1}	-			
V_{2}	.17	-		
V_{3}	.87	.28	-	
V_{4}	.59	.33	.62	-
Distance Table				

Phylogenetic Tree

Question: Given sequence data, how to reconstruct tree?

Distance

A distance (metric) on a set X is a function $d: X \times X \rightarrow \mathbb{R}$ s.t. for all $x, y, z \in X$:
i. $\quad d(x, y) \geq 0$
ii. $d(x, y)=0$ if and only if $x=y$
iii. $d(x, y)=d(y, x)$
iv. $d(x, y) \leq d(x, z)+d(z, y)$
[non-negativity]
[identity of indiscernibles]
[symmetry]
[triangle inequality]

Examples:

- $X=\mathbb{R}$ and $d(x, y)=|x-y|$
- $X=\Sigma^{*}$ and d is Hamming distance
- $X=\Sigma^{*}$ and d is edit distance

Alignment vs. Distance Matrices

Mouse: Gorilla:

Chimpanzee: Human:

ACAGTGACGCCACACACGT

 CCTGTGACGTAACAAACGACCTGTGAGGTAGCAAACGA

Genes of length m in n species

Easy: use (weighted) edit distance

Reverse
transformation not possible due to loss of information

$$
n \times n \text { distance matrix }
$$

Distances in Trees

Given a tree T with positive edge weights $w(e)$, tree distance
$d_{T}(i, j)$ between two
leaves i and j is the sum of weights of edges on the unique path from i to j

$$
d_{T}(1,4)=12+13+14+17+13=69
$$

General Distance vs. Tree Distance

Rat:
Mouse:
Gorilla:
Chimpanzee:
Human:

ACAGTGACGCCCCAAACGT
ACAGTGACGCTACAAACGT
CCTGTGACGTAACAAACGA-
CCTGTGACGTAGCAAACGA
CCTGTGACGTAGCAAACGA
\qquad

Tree distance $d_{T}(i, j)$ not necessarily equal to $d_{i, j}$ as given by distance matrix obtained from alignment

Fitting a Tree to a Given Distance Matrix

- Given n species, we can compute $n \times n$ distance matrix $D=\left[d_{i, j}\right]$
- Evolution of these n species is described by an unknown tree
- We need an algorithm to construct tree T that best fits D

Fitting a Tree to a Given Distance Matrix

- Given n species, we can compute $n \times n$ distance matrix $D=\left[d_{i, j}\right]$
- Evolution of these n species is described by an unknown tree
- We need an algorithm to construct tree T that best fits D

Distance-Based Phylogeny: Given $n \times n$ distance matrix $D=\left[d_{i, j}\right]$, find edge-weighted tree T with n leaves that best fits D

Question: How to define 'best fit'?

Additive Distance Matrices

Matrix D is
ADDITIVE if there exists a tree T with

	A	B	C	D
A	0	2	4	4
B	2	0	4	4
C	4	4	0	2
D	4	4	2	0

Additive Distance Matrices

Matrix D is
ADDITIVE if there exists a tree T with $d_{i j}(T)=D_{i j}$

NON-ADDITIVE otherwise

	A	\mathbf{B}	C	D
A	0	2	2	2
B	2	0	3	2
C	2	3	0	2
D	2	2	2	0

This is a constructive definition

A Small and a Large Problem

Small Additive Distance Phylogeny Problem:

Given $n \times n$ distance matrix $D=\left[d_{i, j}\right]$ and unweighted tree T with n leaves, determine edge weights such that $d_{T}(i, j)=d_{i, j}$

A Small and a Large Problem

Small Additive Distance Phylogeny Problem:

Given $n \times n$ distance matrix $D=\left[d_{i, j}\right]$ and unweighted tree T with n leaves, determine edge weights such that $d_{T}(i, j)=d_{i, j}$

Large Additive Distance Phylogeny Problem:

Given $n \times n$ distance matrix $D=\left[d_{i, j}\right]$, find tree T with n leaves and edge weights such that $d_{T}(i, j)=d_{i, j}$

A Small and a Large Problem

Small Additive Distance Phylogeny Problem:

Given $n \times n$ distance matrix $D=\left[d_{i, j}\right]$ and unweighted tree T with n leaves, determine edge weights such that $d_{T}(i, j)=d_{i, j}$

Large Additive Distance Phylogeny Problem:

Given $n \times n$ distance matrix $D=\left[d_{i, j}\right]$, find tree T with n leaves and edge weights such that $d_{T}(i, j)=d_{i, j}$

Both problems can be solved in polynomial time

Additive Distance Problem with $n=3$ Sequences

Additive Distance Problem with $n>3$ Sequences

Unrooted binary tree with n leaves has $2 n-3$ edges and $\binom{n}{2}$ pairwise distances:

- $2 n-3$ variables
- $\binom{n}{2}$ equations

NON-ADDITIVE otherwise

	\mathbf{A}	\mathbf{B}	C	D
A	0	2	2	2
B	2	0	3	2
C	2	3	0	2
D	2	2	2	0

?

Solution not always possible for $n>3$

Small Additive Distance Problem

Small Additive Distance Phylogeny Problem:

Given $n \times n$ distance matrix $D=\left[d_{i, j}\right]$ and unweighted tree T with n leaves, determine edge weights such that $d_{T}(i, j)=d_{i, j}$

D

	\mathbf{v}	\mathbf{w}	\mathbf{x}	\mathbf{y}	\mathbf{z}
\mathbf{v}	0	10	17	16	16
\mathbf{w}		0	15	14	14
\mathbf{x}			0	9	15
\mathbf{y}				0	14
\mathbf{z}					0

Small Additive Distance Problem

Small Additive Distance Problem

$\mathbf{D} \mathbf{D}$| | \mathbf{v} | \mathbf{w} | \mathbf{x} | \mathbf{y} | \mathbf{z} |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \mathbf{v} | 0 | 10 | 17 | 16 | 16 |
| \mathbf{w} | | 0 | 15 | 14 | 14 |
| \mathbf{x} | | | 0 | 9 | 15 |
| \mathbf{y} | | | | 0 | 14 |
| \mathbf{z} | | | | | 0 |

D_{1}| | \mathbf{a} | \mathbf{x} | \mathbf{y} | \mathbf{z} |
| :---: | :---: | :---: | :---: | :---: |
| \mathbf{a} | 0 | 11 | 10 | 10 |
| \mathbf{x} | | 0 | 9 | 15 |
| \mathbf{y} | | | 0 | 14 |
| \mathbf{z} | | | | 0 |

Small Additive Distance Problem

D_{1}| | \mathbf{a} | \mathbf{x} | \mathbf{y} | \mathbf{z} |
| :---: | :---: | :---: | :---: | :---: |
| \mathbf{a} | 0 | 11 | 10 | 10 |
| \mathbf{x} | | 0 | 9 | 15 |
| \mathbf{y} | | | 0 | 14 |
| \mathbf{z} | | | | 0 |

Small Additive Distance Problem

D_{1}| | \mathbf{a} | \mathbf{x} | \mathbf{y} | \mathbf{z} |
| :---: | :---: | :---: | :---: | :---: |
| \mathbf{a} | 0 | 11 | 10 | 10 |
| \mathbf{x} | | 0 | 9 | 15 |
| \mathbf{y} | | | 0 | 14 |
| \mathbf{z} | | | | 0 |

D_{2}| | \mathbf{a} | \mathbf{b} | \mathbf{z} |
| :---: | :---: | :---: | :---: |
| \mathbf{a} | 0 | 6 | 10 |
| \mathbf{b} | | 0 | 10 |
| \mathbf{z} | | | 0 |

D_{3}		
	a	C
a	0	3
c		0

$$
d(a, c)=3
$$

$$
d(b, c)=d(a, b)-d(a, c)=3
$$

$$
d(c, z)=d(a, z)-d(a, c)=7
$$

$$
d(b, x)=d(a, x)-d(a, b)=5
$$

$$
d(b, y)=d(a, y)-d(a, b)=4
$$

$$
d(a, w)=d(z, w)-d(a, z)=4
$$

$$
d(a, v)=d(z, v)-d(a, z)=6
$$

Correct!!!

Small Additive Distance Problem

1. Find neighboring leaves i and j with parent k
2. Remove the rows and columns of i and j
3. Add a new row and column corresponding to k, where the distance from k to any other leaf m is computed as

$$
d_{k, m}=\frac{\left(d_{i, m}+d_{j, m}-d_{i, j}\right)}{2}
$$

4. Repeat steps 1-3 until tree has only two vertices

A Small and a Large Problem

Small Additive Distance Phylogeny Problem:

Given $n \times n$ distance matrix $D=\left[d_{i, j}\right]$ and unweighted tree T with n leaves, determine edge weights such that $d_{T}(i, j)=d_{i, j}$

Large Additive Distance Phylogeny Problem:

Given $n \times n$ distance matrix $D=\left[d_{i, j}\right]$, find tree T with n leaves and edge weights such that $d_{T}(i, j)=d_{i, j}$

Both problems can be solved in polynomial time

Large Additive Distance Phylogeny Problem

Idea: find neighboring leaves by simply selecting pair of closest leaves

	\boldsymbol{i}	\boldsymbol{j}	\boldsymbol{k}	\boldsymbol{I}
\boldsymbol{i}	0	13	21	22
\boldsymbol{j}		0	12	13
\boldsymbol{k}			0	13
\boldsymbol{I}				0

i and j are neighbors, but $\left(d_{i j}=13\right)>\left(d_{j k}=12\right)$.
Finding a pair of neighboring leaves is a nontrivial problem!

Degenerate Triples

A degenerate triple is a set of three distinct elements $i, j, k \in[n]$ such that $d_{i, j}+d_{j, k}=d_{i, k}$

	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}
\mathbf{A}	0	2	8	7
\mathbf{B}		0	6	5
\mathbf{C}			0	7
\mathbf{D}				0

Element j in a degenerate triple (i, j, k) lies* on the evolutionary path from i to k
*or is attached to this path by an edge of length 0

Degenerate Triples can be Removed

A degenerate triple is a set of three distinct elements
$i, j, k \in[n]$ such that $d_{i, j}+d_{j, k}=d_{i, k}$

	\mathbf{A}	\mathbf{C}	\mathbf{D}
\mathbf{A}	0	8	7
\mathbf{C}		0	7
\mathbf{D}			0

Element j in a degenerate triple (i, j, k) lies* on the evolutionary path from i to k
*or is attached to this path by an edge of length 0

Looking for Degenerate Triples

If distance matrix D does not have a degenerate triple, one can create one by shortening all hanging edges

	A	B	C	D
A	0	4	10	9
B	4	0	8	7
C	10	8	0	9
D	9	7	9	0

Trimming
Parameter
$\longrightarrow=1$

	A	B	C	D
A	0	2	8	7
B	2	0	6	5
C	8	6	0	7
D	7	5	7	0

Decrease entries in matrix D by 2δ

Additive Phylogeny

- If there is no degenerative triple:
- Reduce all hanging edges by the same amount δ, so that all pairwise distances in the matrix are reduced by 2δ.
- This process will eventually collapse one of the leaves (when δ equals the length of the shortest hanging edge), forming a degenerate triple (i, j, k) and reducing the size of the distance matrix D
- The attachment point for j can be recovered in the reverse transformations by saving $d_{i, j}$ for each collapsed leaf.

Additive Phylogeny

AdditivePhylogeny(D)

if D is a 2×2 matrix
$T=$ tree of a single edge of length $D_{1,2}$ return T
if D is non-degenerate
Compute trimming parameter δ
Trim (D, δ)
Find a triple i, j, k in D such that $D_{i j}+D_{j k}=D_{i k}$ $x=D_{i j}$
Remove $j^{\text {th }}$ row and $j^{\text {th }}$ column from D
$T=$ AdditivePhylogeny (D).
Add a new vertex v to T at distance x from i to k
Add j back to T by creating an edge (v, j) of length 0
for every leaf / in T
if distance from $/$ to v in the tree $\neq D_{l, j}$ output "matrix is not additive" return
Extend all "hanging" edges by length δ return T

Outline

- Introduction
- Hierarchical clustering
- Additive distance phylogeny
- Four point condition
- Neighbor joining

Reading:

- Chapter 10.2 and 10.5-10.8 in Jones and Pevzner

Additive Distance Matrices

Matrix D is
 ADDITIVE if there exists a tree T with $d_{i j}(T)=D_{i j}$

	\mathbf{A}	\mathbf{B}	C	D
A	0	2	4	4
B	2	0	4	4
C	4	4	0	2
D	4	4	2	0

NON-ADDITIVE otherwise

	A	B	C	D
A	0	2	2	2
B	2	0	3	2
C	2	3	0	2
D	2	2	2	0

?

This is a constructive definition

Question: Can we characterize set of additive matrices?

Four Point Condition (Zaretskii 1965, Buneman 1971)

Four point condition of matrix $D=\left[d_{i, j}\right]$:

Every four leaves (quartet) can be labeled as (i, j, k, l) such that

$$
d_{i, j}+d_{k, l} \leq d_{i, k}+d_{j, l}=d_{i, l}+d_{j, k}
$$

Three sums:	
1.	$d_{i, j}+d_{k, l}$
2.	$d_{i, k}+d_{j, l}$
3.	$d_{i, l}+d_{j, k}$

2 and 3 represent the same number: 1 (length of all edges) + 2 * (length middle edge)

3 个
1 represents a smaller number: (length of all edges) - (length middle edge)

Four Point Condition

Four point condition of matrix $D=\left[d_{i, j}\right]$:

Every four leaves (quartet) can be labeled as (i, j, k, l) such that

$$
d_{i, j}+d_{k, l} \leq d_{i, k}+d_{j, l}=d_{i, l}+d_{j, k}
$$

If two leaves are the same, four point condition is triangle inequality

$$
\text { (e.g. set } l=j \text {) }
$$

Four point condition generalizes triangle inequality and defines a subset of distances, namely additive distances

Four Point Condition: Theorem

Every four leaves (quartet) can be labeled as (i, j, k, l) such that

$$
d_{i, j}+d_{k, l} \leq d_{i, k}+d_{j, l}=d_{i, l}+d_{j, k}
$$

Theorem: An $n \times n$ matrix D is additive if and only if the for point condition holds for every quartet $(i, j, k, l) \in[n]^{4}$

Four Point Condition: Theorem

Every four leaves (quartet) can be labeled as (i, j, k, l) such that

$$
d_{i, j}+d_{k, l} \leq d_{i, k}+d_{j, l}=d_{i, l}+d_{j, k}
$$

Theorem: An $n \times n$ matrix D is additive if and only if the for point condition holds for every quartet $(i, j, k, l) \in[n]^{4}$

Proof: (=>) Since D is additive, there is a tree T such that $d_{i, j}=d_{T}(i, j)$ for all $(i, j) \in n^{2}$. Let (i, j, k, l) be a quartet. Assume w.l.o.g. that i, j and k, l are neighbors. Define λ_{m} as illustrated.

Four Point Condition: Theorem

Every four leaves (quartet) can be labeled as (i, j, k, l) such that

$$
d_{i, j}+d_{k, l} \leq d_{i, k}+d_{j, l}=d_{i, l}+d_{j, k}
$$

Theorem: An $n \times n$ matrix D is additive if and only if the for point condition holds for every quartet $(i, j, k, l) \in[n]^{4}$

Proof: (=>) Since D is additive, there is a tree T such that $d_{i, j}=d_{T}(i, j)$ for all $(i, j) \in n^{2}$. Let (i, j, k, l) be a quartet. Assume w.l.o.g. that i, j and k, l are neighbors. Define λ_{m} as illustrated.

$$
\begin{aligned}
& d_{i, k}+d_{j, l}=\left(\lambda_{1}+\lambda_{3}+\lambda_{4}\right)+\left(\lambda_{2}+\lambda_{3}+\lambda_{5}\right)=d_{i, l}+d_{j, k} \\
& \geq\left(\lambda_{1}+\lambda_{2}\right)+\left(\lambda_{4}+\lambda_{5}\right)=d_{i, j}+d_{k, l} \\
& \hline
\end{aligned}
$$

Four Point Condition: Theorem

Every four leaves (quartet) can be labeled as (i, j, k, l) such that

$$
d_{i, j}+d_{k, l} \leq d_{i, k}+d_{j, l}=d_{i, l}+d_{j, k}
$$

Theorem: An $n \times n$ matrix D is additive if and only if the for point condition holds for every quartet $(i, j, k, l) \in[n]^{4}$

Proof: (<=) Assume four point condition holds. Need an algorithm to construct T. AdditivePhylogeny (T) is one such algorithm*. Neighbor joining is another algorithm.

Additive Distance Matrix

Four point condition of matrix $D=\left[d_{i, j}\right]$:

Every four leaves (quartet) can be labeled as (i, j, k, l) such that

$$
d_{i, j}+d_{k, l} \leq d_{i, k}+d_{j, l}=d_{i, l}+d_{j, k}
$$

Theorem: Let D be an $n \times n$ matrix. The following statements are equivalent.

1. Matrix D is additive.
2. There exists a unique tree T (modulo isomorphism) s.t. $d_{i, j}=$ $d_{T}(i, j)$ for all $(i, j) \in n^{2}$.
3. Four point condition holds for every quartet $(i, j, k, l) \in[n]^{4}$.

Outline

- Introduction
- Hierarchical clustering
- Additive distance phylogeny
- Four point condition
- Neighbor joining

Reading:

- Chapter 10.2 and 10.5-10.8 in Jones and Pevzner

Distance Based Phylogeny Problem

Large Additive Distance Phylogeny Problem:

Given $n \times n$ matrix $D=\left[d_{i, j}\right]$, find tree T with n leaves and edge weights such that $\max _{(i, j) \in[n]^{2}}\left|d_{T}(i, j)-d_{i, j}\right|$ is minimum.

Equivalently, find additive matrix D^{\prime} closest to input matrix D

Neighbor Joining Algorithm (Saitou and Nei 1987)

- Constructs binary unrooted trees.
- Recall: leaves a and b are neighbors if they have a common parent
- Recall: closest leaves are not necessarily neighbors
- NJ: Find pair of leaves that are
 "close" to each other but "far" from other leaves

Two advantages: (1) reproduces correct tree for additive matrix, and (2) otherwise gives good approximation of correct tree

Distance Trees as Hierarchical Clustering

Leaves $=$ Data points.

Data points clustered/grouped into hierarchy according to some distance criterion.

Distance Trees as Hierarchical Clustering

Leaves $=$ Data points.

Data points clustered/grouped into hierarchy according to some distance criterion.

Distance Trees as Hierarchical Clustering

1. Hierarchical Clustering (\boldsymbol{D}, n)
2. Form n clusters each with one element
3. Construct a graph \boldsymbol{T} by assigning one vertex to each cluster
4. while there is more than one cluster
5. Find the two closest clusters C_{1} and C_{2}
6. Merge C_{1} and C_{2} into new cluster C with $\left|C_{1}\right|+\left|C_{2}\right|$ elements
7. Compute distance from \boldsymbol{C} to all other clusters
8. Add a new vertex \boldsymbol{C} to \boldsymbol{T} and connect to vertices C_{1} and C_{2}
9. Remove rows and columns of D corresponding to C_{1} and C_{2}
10. Add a row and column to \boldsymbol{D} corresponding to the new cluster \boldsymbol{C}
11. return \boldsymbol{T}

Selection criterion: distance between clusters affects clustering!

Neighbor Joining: Selection Criterion

Let $\boldsymbol{C}=\{1, \ldots, n\}$ be current clusters/leaves.

Define: $u_{i}=\sum_{k} \mathrm{D}(i, k)$.
Intuitively, u_{i} measures separation of i from other leaves.
Goal: Minimize $\mathrm{D}(i, j)$ and maximize $u_{i}+u_{j}$.
Solution: Find pair (i, j) that minimizes:

$$
S_{D}(i, j)=(n-2) D(i, j)-u_{i}-u_{j}
$$

Claim: Given additive matrix D.
$S_{D}(x, y)=\min S_{D}(i, j)$ if and only if x and y are neighbors in tree T with $d_{T}=D$.

Neighboring Joining: Algorithm

Initialization:
Form n clusters $C_{1}, C_{2}, \ldots, C_{n}$, one for each leaf node.
Define tree T to be the set of leaf nodes, one per sequence.

```
Iteration: (D is m\timesm)
Pick i,j such that SD (i,j)=(m-2)D(i,j) - u
Merge iand j into new node [j] in T.
Assign length }1/2(D(i,j)+1/(m-2)(\mp@subsup{u}{i}{}-\mp@subsup{u}{j}{}))\mathrm{ to edge (i, [i] )
Assign length }1/2(D(i,j)+1/(m-2)(\mp@subsup{u}{j}{}-\mp@subsup{u}{i}{}))\mathrm{ to edge (j, [i] )
```

Remove rows and columns from D corresponding to i and j.
Add row and column to D for new vertex [ij].
Set $D([i], m)=1 / 2[D(i, m)+D(j, m)-D(i, j)]$

Termination:
When only one cluster

Question: Does this create rooted or unrooted trees?

Advantages of Neighbor Joining

Theorem: Let D be an $n \times n$ matrix. If matrix D is additive then neighbor joining produces the unique phylogenetic tree T (modulo isomorphism) such that $d_{i, j}=d_{T}(i, j)$ for all $(i, j) \in n^{2}$.

Theorem: Let D be an $n \times n$ matrix. If there exists an additive matrix D^{\prime} such that $\left|D-D^{\prime}\right|_{\infty} \leq 0.5$ then neighbor joining applied to D reconstructs the unique tree T (modulo isomorphism) such that $d_{i, j}^{\prime}=d_{T}(i, j)$ for all $(i, j) \in n^{2}$.

Neighbor Joining in Practice

Neighbor Joining tree relating copy number profiles from single cells in a tumor.
[Navin et al, Nature 2011]

Summary

- Introduction
- Hierarchical clustering
- Additive distance phylogeny
- Four point condition
- Neighbor joining

Reading:

- Chapter 10.2 and 10.5-10.8 in Jones and Pevzner

