CS 466

Introduction to Bioinformatics
Lecture 12

Course Announcements owpees 2 wsas w3 i

10/22/2018 |14 Phylogeny |

10/24/2018 | 15 Phylogeny Il

10/29/2018 |16 Phylogeny Il

10/31/2018 |17 Phylogeny IV HW4 -- Phylogeny

11/5/2018 18 Assembly |

11/7/2018 19 Assembly Il

11/12/2018 | 20 HMM |

11/14/2018 |21 HMM I HWS5 -- HMM, implementation
Project proposal deadline

11/19/2018 Thanksgiving

11/21/2018 Thanksgiving

11/26/2018 |22 Pattern Matching |

11/28/2018 |23 Pattern Matching Il

12/3/2018 24 Review

12/5/2018 25 Final

12/10/2018 | 26

12/14/2018 | 27 Project deadline

Course Project

Project

There are three kinds of projects.
1. Implement an algorithm discussed in class, and make it available on Github.

2. Benchmark algorithms discussed in class that solve the same problem on
simulated or real data. Write a report about your findings.
3. Write a small survey paper, summarizing state-of-the-art algorithms for a

specific computational biology problem.

Project proposal due on Nov. 14
(Motivation, Datasets/papers, Planned method/experiments, Timeline)

Project report due on Dec. 14

Outline

* Scoring matrices
* Tree/star alignment
* Progressive alignment methods

Reading:

* Material based on Chapter 14.6 in book “Algorithms on Strings, Trees and
Sequences” by Dan Gusfield

* Chapter 6.7 in Jones and Pevzner
* Lecture notes

Substitution Matrices

* Given a pair (v, w) of aligned sequences, we want to assign a score that
measure the relative likelihood that the sequences are related as opposed
to being unrelated

 We need two models:
* Random model R: each letter a € X occurs independently with probability g,
 Match model M: aligned pair (a, b) € £ X X occur with joint probability p, j,

Pr(v,w|R) = 1_[Qv; - 1_[Qw; Pr(v,w| M) = 1_[Pv,w;
[L L

pr(V, Wl M) _ Pab
VW R) >.; S(v;,w;) where s(a, b) = log —

log

BLOSUM (Blocks Substitution Matrices)

* Henikoff and Henikoff, 1992

 Computed using ungapped alignments of protein
segments (blocks) from BLOCKS database

* Thousands of such blocks go into computing a
single BLOSUM matrix

* Example of a one such block (right):
e 31 positions (columns)
* 61 sequences (rows)

* Given threshold L, block is pruned down to largest
set C of sequences that have at least L% sequence
identity to another sequence in C

* How to compute C?

SHLLRHQRIHDKTA
SHLLRHQRTHDKD R

SHLLRHQRIHDKN
SHLLRHQRIHDKN
SHLLRHQRIHDKN
SHLLRHQRIHDKN
SHLLRHQRIHDKN
SHLLRHQRIHDKN

SHLLRHQRIHDKN

SHLLRHQRIHDKNH
SHLLRHQRIHDKNH

SHLLRHQRIHNKS
SHLLRHQRIHNKN
SHLLRHQRIHNKN
SHLLRHQRIHNKN

SHLLRHQRIHDKS

SHLLRHQRIHDKSY

SHLLRHQRIHDKS
SHLLRHQRIHDKS
SHLLRHRRVHDKD
SHLLRHRRVHDKD

SHLLRHQRVHDKN
SHLLRHQRVHDKN

SHLLRHQRIHERN
SHLLRHQRIHERN
SHLLRHQRIHNRC
SHLLRHQRIHNRC
SHLLRHQRIHNRF
SHLLRHQRIHNRF

THMOO0OO0OO0O0O0O0O0O0O0O0O0OO0000O0O00OMMOO0OO0O0O0O0O0O0O0O0O0O00O YO YODOOOOO0OOO Y

R
Q
Q

PLWEGPVAGQGEDVE
PEWESRVESHWENIE
PEWKSRMESQLENVE
PEWKSRMEGQLENVE
TEWKSRMESQLENVE
PEWKSRMESQLENVE
PEWKSRTESQLENVE
PEWKSRTESQLENVE
PEWEGRTESQWQNVE
PEWEGRTESQWQNVE
PEWESQMEIQERNVE
PEWECRVEGQWENVE
PGWECRVEGQWENVE
SEMGCRTESQUWENVQ
SEWGCRTESQUWENVQ
PEWEYRGEGQWENNE
PEWEYRGEGQWENNE
PEWESRTESQWENVD
PEWESRTESQWENVD
SEWESRMESQWENVE
PEWESRTESQUWENTE
PEWESRTESQWENTE
PEWESRTESQUENTE
PEWESRTESQWENTE
PEWERRTESQWENIE
PEWERRTESQWENIE
PEWEGRTESQWENVE
PEWEGRTESQWENVE
PEWESRVESQWENVE
PEWESRVESQUENVE
PEWE SRMESQWESVE
LEWE SRME SQWE SVE
PDWESRKESQUENVE
PDWESRKESQWENVE
PDWESRMESQWENVE
PDWE SRMESQWENVE
REWESRVESRWENVE
REWESRVESRWENVE
PKGQSRRESQWENFE
PKGOSRRESQWENFE
LDWOSRLESQUWGDVE
PDWESRMESQEGHIE
PDWESRMESQEGHIE
PKWECRKGGQEENAE
PKWECRKGGQEENAE
PDWESRMES SWENAE
PDWESRMESSWENAE
PEWEDRVERSEGSVE
PEWEDRVERSEGSVE
SEWESRMENQUWENAE
SEWESRMENQUWENAK
SEWENRVENQWEKTE
SEWENRVENQWEDTE
PDWEGRLEGQWENTE
PDWEGRMESQWENTE
PDWEGRMESQWENVG
PDWEGRMESQUWENYVG

HHPAVFESETETQUWGNLE
HHPAVFESETETQUWGNLE
HHPPECEGEVETQWENLE
HHPPECEGEVETQWENLE

BLOSUM

Blocks Substitution Matrices

Pr(V,W| R)

log Pr(V,w| M)

Pab

=2.;s(v;, w;) where s(a, b) = —logq -

* Null model frequencies q,q; of letters a and b:
e Count the number of occurrences of a (b) in all

blocks

* Divide by sum of lengths of each block

(sequences *

positions)

* Match model frequency pg p:
* Count the number of pairs (a, b) in all columns

of all blocks

* Divide by the total number of pairs of columns:

cn(©)(™)
 m(C) is the number of sequences in block C
* n(C) is the number of positions in block C

SHLLRHQRIHDKTA
SHLLRHQRTHDKD §

SHLLRHQRIHDKN
SHLLRHQRIHDKN
SHLLRHQRIHDKN
SHLLRHQRIHDKN

SHLLRHQRIHDKNY

SHLLRHQRIHDKN

SHLLRHQRIHDKNH
SHLLRHQRIHDKNH

SHLLRHQRIHNKSY
SHLLRHQRIHNKNY

SHLLRHQRIHNKN
SHLLRHQRIHNKN

SHLLRHQRIHDKS
SHLLRHQRIHDKS
SHLLRHQRIHDKS
SHLLRHQRIHDKS
SHLLRHRRVHDKD
SHLLRHRRVHDKD

SHLLRHQRVHDKN
SHLLRHQRVHDKN

SHLLRHQRIHERN
SHLLRHQRIHERN
SHLLRHQRIHNRC
SHLLRHQRIHNRC
SHLLRHQRIHNRF
SHLLRHQRIHNRF

THMOO0OO0OO0O0O0O0O0O0O0O0O0OO0000O0O00OMMOO0OO0O0O0O0O0O0O0O0O0O00O YO YODOOOOO0OOO Y

R
Q
Q

PLWEGPVAGQGEDVE
PEWESRVESHWENIE
PEWKSRMESQLENVE
PEWKSRMEGQLENVE
TEWKSRMESQLENVE
PEWKSRMESQLENVE
PEWKSRTESQLENVE
PEWKSRTESQLENVE
PEWEGRTESQUQNVE
PEWEGRTESQWQNVE
PEWESQMEIQERNVE
PEWECRVEGQWENVE
PGWECRVEGQWENVE
SEWGCRTESQWENYVQ
SEWGCRTESQWENYVQ
PEWEYRGEGQWENNE
PEWEYRGEGQWENNE
PEWESRTESQWENYVD
PEWESRTESQUWENYVD
SEWESRMESQWENVE
PEWESRTESQWENTE
PEWESRTESQWENTE
PEWESRTESQWENTE
PEWESRTESQWENTE
PEWERRTESQUWENIE
PEWERRTESQWENIE
PEWEGRTESQWENVE
PEWEGRTESQWENVE
PEWESRVESQUENVE
PEWESRVESQWENVE
PEWESRMESQWESVE
LEWE SRME S QWE SVE
PDWESRKESQWENVE
PDWESRKESQWENVE
PDWESRMESQWENVE
PDWESRMESQWENVE
REWESRVESRWENVE
REWESRVESRWENVE
PKGQSRRESQWENFE
PKGOSRRESQWENFE
LDWQSRLESQWGDVE
PDWESRMESQEGHIE
PDWESRMESQEGHIE
PKWECRKGGQEENAE
PRKWECRKGGQEENAE
PDWESRME S SWENAE
PDWESRME S SWENAE
PEWEDRVERSEGSVE
PEWEDRVERSEGSVE
SEWESRMENQUWENAE
SEWESRMENQWENAK
SEWENRVENQWEKTE
SEWENRVENQWEDTE
PDWEGRLEGQWENTE
PDWEGRMESQWENTE
PDWEGRMESQWENVG
PDWEGRMESQUENVG

HHPAVFESETETQUWGNLE
HHPAVFESETETQUWGNLE
HHPPECEGEVETQWENLE
HHPPECEGEVETQWENLE

BLOSUM (Blocks Substitution Matrices)

Pr(V,W| R)
Pr(V,w| M)

log

=.;s(v;, w;) where s(a,b) = —log

daqb

* Null model frequencies q,q; of letters a and b:

e Count the number of occurrences of a (b) in all
blocks

* Divide by sum of lengths of each block
(sequences * positions)

* Match model frequency pg p:

* Count the number of pairs (a, b) in all columns
of all blocks
* Divide by the total number of pairs of columns:
+ 2en(@©(M)
 m(C) is the number of sequences in block C
* n(C) is the number of positions in block C

Example: (1 = 0.5)

7
= —
AAT RE
S A L e @
T A L ParT =735
4
ra v S(A,T)=2-log73—03
A AL Lo 7E

~ 0.3

R) 1 p
0OS 6 Pr(V, W| _ v . _1 il
BLOSUMG62 log br(v, W] M) >.; S(v;,w;) where s(a, b) Alog _—
Ala 4

Arg -1 5 This explains some details in BLOSUM62 that may seem

Asn -2 0 6 counterintuitive at first glance. For instance, tryptophan (W/W) pairs
Asp -2 -2 1 6 score +11, while leucine (L /L) pairs only score +4; why shouldn't all

Cys O -3 -3 =3 9 identitites get the same score? The rarer the amino acid is, the more
GlIn -1 1 0 0O -3 5 surprising it would be to see two of them align together by chance. In
Glu -1 0 0 2 =4 2 5 the homologous alignment data that BLOSUMG62 was trained on,

Gly 0o -2 0O -1 -3 -2 =2 6 leucine/leucine (L /L) pairs were in fact more common than

His =2 0 1 -1 =3 0 0O =2 8 tryptophan/tryptophan (W/W) pairs (p.. = 0.0371, pyww = 0.0065), but
lle -1 -3 -3 -3 -1 -3 -3 -4 -3 4 tryptophan is a much rarer amino acid (f, = 0.099, f,, = 0.013). Run those
Leu -1 -2 -3 4 -1 -2 -3 —4 -3 2 4 numbers (with BLOSUMG62's original A = 0.347) and you get +3.8 for L/L
Lys -1 2 0O -1 =3 1 1 -2 -1 -3 =2 and+10.5for W/W, which were rounded to +4 and +11.

Met -1 -1 -2 -3 -1 0 -2 -3 -2 1 2 -1 5 https://doi.org/10.1038/nbt0804-1035
Phe -2 -3 -3 -3 -2 -3 -3 -3 -1 0 0 -3 0 6

Po -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7

Ser 1 -1 1 0 -1 0 0 O -1 -2 =2 O -1 -2 -1

Thr 0 -1 o -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5

T -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11

Tyr -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7

Val o -3 -3 -3 -1 -2 -2 -3 -3 3 1 =2 1 -1 -2 =2 0O -3 -1 4

Ala Arg Asn Asp Cys GIn Glu Gly His

lle Leu Lys Met Phe Pro Ser Thr Trp Tyr Val ?

https://doi.org/10.1038/nbt0804-1035

Outline

* Tree/star alighnment
* Current progressive alignment methods

Reading:

* Material based on Chapter 14.6 in book “Algorithms on Strings, Trees and
Sequences” by Dan Gusfield

* Chapter 6.7 in Jones and Pevzner
* Lecture notes

Example — Tree Alignment

AXZ AXZ
| 2
B AN
31 AXXE 1 AX _ _ Z
a) o cecln =
4 AY __zZ
| vz 5§ A¥FZXZ
4
5" AYXYZ

Figure 14.6: a. A tree with its nodes labeled by a (multi)set of strings, b. A multiple alignment of those strings that is consistent with the tree. The
pairwise scoring scheme scores a zero for each match and a one for each mismatch or space opposite a character. The reader can verify that each of the

four induced alignments specified by an edge of the tree has a score equal to its respective optimal distance. However, the induced alignment of two
strings which do not label adjacent nodes may have a score greater than their optimal pairwise distance.

Outline

* Current progressive alignment methods

Reading:

* Material based on Chapter 14.6 in book “Algorithms on Strings, Trees and
Sequences” by Dan Gusfield

* Chapter 6.7 in Jones and Pevzner
* Lecture notes

Progressive Alignment — Feng and Doolittle (1987)

1. Compute pairwise sequence
alignments of n sequences

2. Generate complete graph
G = (V,E) with edge weights
w:E->R

3. Compute a (rooted) minimum
spanning tree T of G

4. Perform sequence-sequence, Minimum spanning tree is a
sequence-profile and profile- tree T spanning all vertices of G
profile alignment to construct with minimum total weight

MSA according to guide tree T

‘Once a gap, always a gap’

Progressive Alignment — ClustalW (1994)

e Widely used alignment method by Thompson, Higgins and Gibson (1994)

* W stands for weighted:

* Input sequences are weighted to compensate for biased representation

e Different substitution matrices depending on expected similarity in guide tree
(BLOSUMB8O for closely related sequences, and BLOSUMS5O0 for distant sequences)

* Position-specific gap-open and gap-extend penalties depending on context
(hydrophobic vs. hydrophilic)

Three steps:

1. Construct pairwise alignments
2. Build guide tree T using neighbor joining™
3. Progressive alignment guided by T

ClustalW — Step 2: Guide Tree

Create Guide Tree using the similarity matrix

(“cluster” distances. Details tocome...)

Vi Vo V3 Vy vy

Vl - V3

V2 .17 - %

v.| .87 .28 - ’

3 v,
vy,| .59 .33 .62 -

ClustalW uses the neighbor-joining method
Guide tree roughly reflects evolutionary relationships
Calculate:

= alignment (v;, v3)

Vi 3 4 = a11'_gnment((v1,3),v4)
Vi 234 = alignment ((v; 3 4),V5)

ClustalW — Step 3: Progressive Alignment

 Start by aligning the two most similar sequences

* Following the guide tree, add in the next sequences, aligning to

the existing alignment

* Insert gaps as necessary

FOS RAT PEEMSVTS-ILDLTGGLPEATTPESEEAFTLPLLNDPEPK-PSLEPVKNI SNMELKAEPFEFD
FOS MOUSE PEEMSVAS-IDLTGGLPEASTPESEEAFTLPLLNDPEPK-PSLEPVKSI SNVELKAEPFD
FOS CHICK SEELAAATALDLG---—-APSPAAAEEAFALPIMTEAPPAVPPKEPSG--SGLELKAEPFED
FOSE_MOUSE PGPGPLAEVRDLPG-—-—=---STSAKEDGFGWLLPPPPPPP-------—---—-—-————— LPFQ
FOSB HUMAN PGPGPLAEVRDLPG-—----SAPAKEDGFSWLLPPPPPPP-----—--—---—-—————— LPFQ
*x % . X . * * * * Kk .

Dots and stars show how well-conserved a column is.

16

MUSCLE (Edgar, 2004)
Mu

tiple Sequence Comparison by Log-Expectation

Three phases:

1. Draft progressive alignment: fast heuristic
2. Improved progressive: use tree derived in phase 1

3. Refinement of MSA
* Remove sequence from MSA MUSCLE

and reallgn to prOfIIe Input form Web services e
Of re m a I n I n g Se q u e n Ce S Tools > Multiple Sequence Alignment > MUSCLE
. Multiple Sequence Alignment
[] Re p e a t u n t I I CO nve rge n Ce hcﬂlldstscaﬁ;tz:n;f;'rf;?:iep:nzei:;eor:‘ceth(e:o:;zsa:zf;:zn?g— Expectation. MUSCLE is claimed to achieve both better average accuracy and better speed than

STEP 1 - Enter your input sequences

Enter or paste a set of sequences in any supported format

Orupload afile: Choose File no file selected 17

Progressive MSA

Vi
V3
Tree
Vy
V2
Progressive alignment
Multiple i
Alignment |

LIRS LR A
i um' HE | PRI N R
Circularity! 'HTF i
|deally, want to derive alignment and tree simultaneously - Hard

18

summary

1. Optimal pairwise alignment by dynamic programming in O(n?) time

2. Optimal multiple alignment with SP-score by dynamic programming in
0(k?2%n*) time

3. Multiple alignment with SP-score is NP-hard (Jiang and Wang, 1994)

4. Carrillo-Lipman enables us to decide whether alighment passes through a
vertex (i, i,,13) for k = 3 sequences (generalizes to k > 3)

5. Star alignment gives 2-approximation algorithm

6. Progressive alignment methods are widely used, but come with no
theoretical bounds on alignment quality

History

e 1975 Sankoff
Formulated MSA problem and gave dynamic programming solution

e 1988 Carrillo-Lipman
Branch and Bound approach for MSA

* 1990 Feng-Doolittle
Progressive alignment

* 1993 Gusfield
Star alignment: 2-approximation algorithm

e 1994 Jiang and Wang
MSA with SP-score is NP-hard

* 1994 Thompson- ng%ms -Gibson: ClustalW
Most popular multiple alignment program

* 2000 Notredam-Higgins-Heringa: T-coffee
Use library of pairwise alignments

e 2004 Edgar: MUSCLE
Refinement

Outline

* Scoring matrices
* Tree/star alignment
* Progressive alignment methods

Reading:

* Material based on Chapter 14.6 in book “Algorithms on Strings, Trees and
Sequences” by Dan Gusfield

* Chapter 6.7 in Jones and Pevzner
* Lecture notes

