CS 466 Introduction to Bioinformatics Lecture 11

Mohammed El-Kebir
October 15, 2018

Course Announcements

Instructor:

- Mohammed El-Kebir (melkebir)
- Office hours: Mondays, 3:15-4:15pm

TA:

- Anusri Pampari (pampari2)
- Office hours: Thursdays, 11:00-11:59am in SC 4105

Grades of midterm exam will be released on Wednesday, Oct. 17

Outline

- Multiple sequence alignment
- Scoring matrices
- Tree/star alignment
- Progressive alignment methods

Reading:

- Material based on Chapter 14.6 in book "Algorithms on Strings, Trees and Sequences" by Dan Gusfield
- Chapter 6.7 in Jones and Pevzner
- Lecture notes

Multiple Sequence Alignment (MSA)
A multiple sequence alignment \mathcal{M} between k strings $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ is a $k \times q$ matrix, where $q=\left\{\max \left\{\left|\mathbf{v}_{i}\right|: i \in[k]\right\}, \ldots, \sum_{i=1}^{k}\left|\mathbf{v}_{i}\right|\right\}$ such that the i-th row contains the characters of \mathbf{v}_{i} in order with spaces '-' interspersed and no column contains k spaces

\mathbf{v}_{1}	A	T	-	G	C	G	-
	\mathbf{v}_{2}	A	-	C	G	T	-
\mathbf{v}_{3}	C						
	A	T	C	A	C	-	A

Multiple Alignment Induces Pairwise Alignments

\mathbf{v}_{1}	A	T	-	G	C	G	-
\mathbf{v}_{2}	A	-	C	G	T	-	C
v_{3}	A	T	C	A	C	-	A

Multiple sequence alignment \mathcal{M}

	A	T	-	G	C	G	-		A		T	-	G	C		G	-	v_{2}		-	-	C	G	I		
	A	-	C	G	T	-					T	C	A			-	A	v_{3}	A	I		C	A	c		A

Resulting columns with -/- are removed

Sum-of-Pairs (SP) Score

\mathbf{v}_{1}	A	T	-	G	C	G	-
\mathbf{v}_{2}	A	-	C	G	T	-	C
v_{3}	A	T	C	A	C	-	A

$S\left(\mathbf{v}_{i}, \mathbf{v}_{j}\right)$ is score of induced pairwise alignment of sequences $\left(\mathbf{v}_{i}, \mathbf{v}_{j}\right)$

Multiple sequence alignment \mathcal{M}

	A	T	-	G	C	G				A	T			G	C	G			v_{2}	A		C		G	T	C
V_{2}	A	-	C	G	T	-			V_{3}	A	T	C			C				V_{3}	A	I	C		A	C	

$$
\mathrm{SP}-\operatorname{score}(\mathcal{M})=\sum_{i=1}^{k} \sum_{j=i+1}^{k} S\left(\mathbf{v}_{i}, \mathbf{v}_{j}\right)
$$

Sum-of-Pairs (SP) Score

\mathbf{v}_{1}	A	T	-	G	C	G	-
\mathbf{v}_{2}	A	-	C	G	T	-	C
v_{3}	A	T	C	A	C	-	A

Question: What is a lower bound on SP-score (\mathcal{M}) ?

Multiple sequence alignment \mathcal{M}

	A	T	-	G	C	G	-			A	T		-	G	C	G			v_{2}	A	-	C		G	T	
	A	-	C	G	T	-				A	T	C	C	A	C	-			v_{3}	A	T	C		A	C	

$\operatorname{SP-score}(\mathcal{M})=\sum_{i=1}^{k} \sum_{j=i+1}^{k} S\left(\mathbf{v}_{i}, \mathbf{v}_{j}\right)$

Multiple Sequence Alignment Problem w/ SP-Score

A multiple sequence alignment \mathcal{M} between k strings $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ is a $k \times q$ matrix, where $q=\left\{\max \left\{\left|\mathbf{v}_{i}\right|: i \in[k]\right\}, \ldots, \sum_{i=1}^{k}\left|\mathbf{v}_{i}\right|\right\}$ such that the i-th row contains the characters of \mathbf{v}_{i} in order with spaces ' - ' interspersed and no column contains k spaces

MSA-SP problem: Given strings strings $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ find multiple sequence alignment \mathcal{M}^{*} with minimum value of SP-score $\left(\mathcal{M}^{*}\right)=\sum_{i=1}^{k} \sum_{j=i+1}^{k} S\left(\mathbf{v}_{i}, \mathbf{v}_{j}\right)$ where $S\left(\mathbf{v}_{i}, \mathbf{v}_{j}\right)$ is the score of the induced pairwise alignment of $\left(\mathbf{v}_{i}, \mathbf{v}_{j}\right)$ in \mathcal{M}^{*}

Multiple Sequence Alignment Problem w/ SP-Score

MSA-SP problem: Given strings strings $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ find multiple sequence alignment \mathcal{M}^{*} with minimum value of SP-score $\left(\mathcal{M}^{*}\right)=\sum_{i=1}^{k} \sum_{j=i+1}^{k} S\left(\mathbf{v}_{i}, \mathbf{v}_{j}\right)$ where $S\left(\mathbf{v}_{i}, \mathbf{v}_{j}\right)$ is the score of the induced pairwise alignment of $\left(\mathbf{v}_{i}, \mathbf{v}_{j}\right)$ in \mathcal{M}^{*}

Question: Can we align k sequences each of length n in time $O(\operatorname{poly}(n))$?

No, MSA-SP is NP-hard.
[WANG, L., \& JIANG, T. (1994). On the Complexity of Multiple Sequence Alignment. Journal of Computational Biology, 1(4), 337-348. http://doi.org/10.1089/cmb.1994.1.337]

Outline

- Multiple sequence alignment

- Scoring matrices
- Tree/star alignment
- Progressive alignment methods

Reading:

- Material based on Chapter 14.6 in book "Algorithms on Strings, Trees and Sequences" by Dan Gusfield
- Chapter 6.7 in Jones and Pevzner
- Lecture notes

Substitution Matrices

- Given a pair (\mathbf{v}, \mathbf{w}) of aligned sequences, we want to assign a score that measure the relative likelihood that the sequences are related as opposed to being unrelated
- We need two models:
- Random model R : each letter $a \in \Sigma$ occurs independently with probability q_{a}
- Match model M : aligned pair $(a, b) \in \Sigma \times \Sigma$ occur with joint probability $p_{a, b}$

$$
\operatorname{Pr}(\mathbf{v}, \mathbf{w} \mid R)=\prod_{i} q_{v_{i}} \cdot \prod_{i} q_{w_{i}}
$$

$$
\operatorname{Pr}(\mathbf{v}, \mathbf{w} \mid M)=\prod_{i} p_{v_{i}, w_{i}}
$$

$$
\log \frac{\operatorname{Pr}(\mathbf{v}, \mathbf{w} \mid M)}{\operatorname{Pr}(\mathbf{v}, \mathbf{w} \mid R)}=\sum_{i} s\left(v_{i}, w_{i}\right) \text { where } s(a, b)=\log \frac{p_{a, b}}{q_{a} q_{b}}
$$

BLOSUM (Blocks Substitution Matrices)

- Henikoff and Henikoff, 1992
- Computed using ungapped alignments of protein segments from BLOCKS database
- Two sequences are put in same cluster if \% identical residues exceeds L
- BLOSUM40: derived from alignments that are at least $L=40 \%$ identical
- BLOSUM62: derived from alignments that are at least $L=62 \%$ identical [most widely used]
- BLOSUM80: derived from alignments that are at least $L=80 \%$ identical
- From clustering matrix $E=\left[e_{a, b}\right]$ was obtained, where $e_{a, b}$ is the number of times a and b were present in all pairs of distinct clusters C and C^{\prime} in the same column multiplied by $1 /\left(|C| \cdot\left|C^{\prime}\right|\right)$.
- $q_{a}=\sum_{b} e_{a, b} / \sum_{c, d} E_{c, d}$ and $q_{a, b}=e_{a, b} / \sum_{c, d} E_{c, d}$

BLOSUM62

$$
\begin{aligned}
& \text { Ala } 4 \\
& \text { Arg } \quad-1 \quad 5 \\
& \text { Asn -2 } 0 \\
& \text { Asp } \begin{array}{lllll}
-2 & -2 & 1 & 6
\end{array} \\
& \text { Cys } \begin{array}{lllll}
0 & -3 & -3 & -3 & 9
\end{array} \\
& \begin{array}{lllllll}
\text { GIn } & -1 & 1 & 0 & 0 & -3 & 5
\end{array} \\
& \begin{array}{llllllll}
\text { Glu } & -1 & 0 & 0 & 2 & -4 & 2 & 5
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { His } \begin{array}{llllllllll}
-2 & 0 & 1 & -1 & -3 & 0 & 0 & -2 & 8
\end{array} \\
& \text { Ile } \quad-1 \begin{array}{llllllllll}
& -3 & -3 & -3 & -1 & -3 & -3 & -4 & -3 & 4
\end{array} \\
& \text { Leu } \begin{array}{llllllllllll}
-1 & -2 & -3 & -4 & -1 & -2 & -3 & -4 & -3 & 2 & 4
\end{array} \\
& \text { Lys } \begin{array}{lllllllllllll}
-1 & 2 & 0 & -1 & -3 & 1 & 1 & -2 & -1 & -3 & -2 & 5
\end{array} \\
& \text { Met } \begin{array}{llllllllllllll}
& -1 & -1 & -2 & -3 & -1 & 0 & -2 & -3 & -2 & 1 & 2 & -1 & 5
\end{array} \\
& \text { Phe } \begin{array}{lllllllllllllll}
-2 & -3 & -3 & -3 & -2 & -3 & -3 & -3 & -1 & 0 & 0 & -3 & 0 & 6
\end{array} \\
& \text { Pro } \begin{array}{llllllllllllllll}
-1 & -2 & -2 & -1 & -3 & -1 & -1 & -2 & -2 & -3 & -3 & -1 & -2 & -4 & 7
\end{array} \\
& \begin{array}{lllllllllllllllll}
\text { Ser } & 1 & -1 & 1 & 0 & -1 & 0 & 0 & 0 & -1 & -2 & -2 & 0 & -1 & -2 & -1 & 4
\end{array} \\
& \begin{array}{llllllllllllllllll}
\text { Thr } & 0 & -1 & 0 & -1 & -1 & -1 & -1 & -2 & -2 & -1 & -1 & -1 & -1 & -2 & -1 & 1 & 5
\end{array} \\
& \begin{array}{lllllllllllllllllll}
\text { Trp } & -3 & -3 & -4 & -4 & -2 & -2 & -3 & -2 & -2 & -3 & -2 & -3 & -1 & 1 & -4 & -3 & -2 & 11
\end{array} \\
& \begin{array}{llllllllllllllllllll}
\text { Tyr } & -2 & -2 & -2 & -3 & -2 & -1 & -2 & -3 & 2 & -1 & -1 & -2 & -1 & 3 & -3 & -2 & -2 & 2 & 7
\end{array} \\
& \text { Val } \begin{array}{llllllllllllllllllll}
0 & -3 & -3 & -3 & -1 & -2 & -2 & -3 & -3 & 3 & 1 & -2 & 1 & -1 & -2 & -2 & 0 & -3 & -1 & 4
\end{array}
\end{aligned}
$$

Compatibility

Compatible: Pairwise alignments can be combined into multiple alignment

(a) Compatible pairwise aligrments

Incompatible: Pairwise alignments cannot be combined into multiple alignment

Compatibility

Compatible: Pairwise alignments

 can be combined into multiple alignment

- Indicate incompatible pairwise alignment

Incompatible: Pairwise alignments cannot be combined into multiple alignment

(a) Compatible pairwise alignments

From Compatible Pairwise to Multiple Alignment

Optimal multiple alignment

Pairwise alignments between all pairs of sequences, but they are not necessarily optimal

Optimal multiple alignment

Challenging

Good (not necessary optimal) compatible pairwise alignments between all sequences

Heuristic: Iterative/Progressive Alignment

Iteratively add strings (or alignments) to existing alignment(s).

Progressive Multiple Alignment: Greedy Algorithm

Choose most similar pair among \boldsymbol{k} input strings, combine into a profile. This reduces the original problem to alignment of $\boldsymbol{k} \mathbf{- 1}$ sequences to a profile. Repeat.

Example

Score of +1 for matches, -1 otherwise.

$$
\begin{array}{llll}
\text { s2 } & \text { GTCTGA } & \text { s1 } & \text { GATTCA-- } \\
\text { s4 } & \text { GTCAGC (score }=2) & \text { s4 } & \text { G-T-CAGC } \\
& & & \text { score }=0) \\
\text { s1 } & \text { GAT-TCA } & \text { s2 } & \text { G-TCTGA } \\
\text { s2 } & \text { G-TCTGA (score }=1) & \text { s3 } & \text { GATAT-T (score }=-1) \\
& & \text { s3 } & \text { GAT-ATT } \\
\text { s1 } & \text { GAT-TCA } & \\
\text { s3 } & \text { GATAT-T (score }=1) & \text { s4 } & \text { G-TCAGC (score }=-1)
\end{array}
$$

Question: Any theoretical guarantees on optimality?

