
CS 466 – Introduction to Bioinformatics
Lectures 10-12

Mohammed El-Kebir

October 26, 2018

Document history:

• 10/3/2018: Initial version

• 10/17/2018: Fixed incorrect running time of tree alignment

• 10/17/2018: Typos

• 10/25/2018: Typos

Contents

1 Problem Statement 1

2 Carillo-Lipman Algorithm 2

3 Tree and Star Alignments 3
3.1 Star Alignment . 4

1 Problem Statement

Let Σ be the alphabet. We are given k strings v1, . . . ,vk ∈ Σ∗. A multiple alignment
A = [ap,i] is defied as an k× ℓ matrix where ℓ ∈ {maxp∈[k]{|vp}, . . . ,

󰁓k
p=1 |vp|} such that (i)

each entry ap,i is a character from the gap-extended alphabet Σ ∪ {−}, (ii) removal of the
gap characters from each row ap yields input string vp and (iii) there is no column j ∈ [ℓ]
consisting of only gap characters in A, i.e. ap,j = − for all p ∈ [k].

We consider the Sum-of-Pairs (SP) score SP(A), which uses a given pairwise scoring
function δ : (Σ ∪ {−}) × (Σ ∪ {−}) → R to score every column of an alignment A by
considering all pairs of input sequences. Specifically, SP(A) is defined as

SP(A) =
k󰁛

p=1

k󰁛

q=p+1

ℓ󰁛

i=1

δ(ap,i, aq,i). (1)

We have the following two problems.

1

Problem 1. Weighted SP-Edit Distance Given strings v1, . . . ,vk ∈ Σ∗ and a scoring
function δ : (Σ ∪ {−}) × (Σ ∪ {−}) → R, find a multiple alignment A such that SP(A) is
minimum.

Problem 2. SP-Global Alignment Given strings v1, . . . ,vk ∈ Σ∗ and a scoring function
δ : (Σ ∪ {−})× (Σ ∪ {−}) → R, find a multiple alignment A such that SP(A) is maximum.

Observe that the two problems differ only in the direction of their objective functions,
minimization vs. maximization.

2 Carillo-Lipman Algorithm

We consider the Weighted SP-Edit Distance problem. Extending results from previous
lectures, an optimal alignment for this problem is a shortest path from source (0, . . . , 0)
to sink (|v1|, . . . , |vk|) in the edit graph. Thus, we could identify this shortest path using
a shortest path algorithm. In particular, if the cost function δ assigns non-negative costs
(which is the common case for this problem), we could use Dijkstra’s algorithm.

Dijkstra’s algorithm maintains a priority queue of unvisited vertices, where each vertex
v has a priority p(v) corresponding to the length of the shortest path computed thus far
from the source vertex v0 to v. Initially, the queue contains only the source vertex v0 with
priority p(v0) = 0. The priority of the other vertices v ∕= v0 is set to p(v) = ∞. We pop
a vertex v from the queue with lowest priority p(v), and then update the priorities of its
unvisited neighboring vertices w. Specifically, we set p(w) := p(v) + δ(v, w) and π(w) = v
if p(w) > p(v) + δ(v, w), and add w to the queue if it had not been there already. Next,
we mark v as visited and repeat the procedure until the queue is empty. Each value π(v)
indicates the parent vertex of w on the shortest path from v0 to v. (Note that the above
description differs slightly from the original formulation of Dijkstra’s algorithm, where the
queue contains all vertices initially.)

This algorithm will identify the optimal alignment when run on the edit graph of an
instance of Weighted SP-Edit Distance with non-negative costs. While with dynamic
programming we were filling out the table in a backward manner, i.e. for each cell (i1, . . . , ik)
we considering its incoming edges, Dijkstra’s algorithm fills out the table in a forward manner,
updating the costs of the vertices incident to edges that are outgoing from (i1, . . . , ik) in a
stepwise fashion. What if we could determine whether a cell (vertex) (i1, . . . , ik) is guaranteed
not to be part of the optimal alignment path? In that case, we would not add the neighbors
of (i1, . . . , ik) to the queue, essentially pruning the search space.

The Carillo-Lipman algorithm implements such a pruning step. For ease of exposition,
we consider the case with three input strings v1,v2,v3 that each have the same length n.
Let

• D(i, j, k) be the minimum SP-cost of aligning prefixes v1[1..i],v2[1..j],v3[1..k],

• dp,q(i, j) be the cost of the induced pairwise alignment of vp[1..i],vq[1..j] (where 1 ≤
p < q ≤ 3) of the optimal multiple alignment of v1[1..i],v2[1..j],v3[1..k],

• Dp,q(i, j) be the minimum cost of aligning vp[1..i],vq[1..j] (where 1 ≤ p < q ≤ 3).

2

Clearly, dp,q(i, j) ≥ Dp,q(i, j) as the induced pairwise alignment of an optimal multiple align-
ment are not necessarily optimal themselves. Moreover, by definition of the SP-score, we
have D(i, j, k) = d1,2(i, j) + d1,3(i, k) + d2,3(j, k). Thus, we have

D(i, j, k) = d1,2(i, j) + d1,3(i, k) + d2,3(j, k) ≥ D1,2(i, j) +D1,3(i, k) +D2,3(j, k). (2)

Let’s consider suffixes v1[i..n],v2[j..n],v3[k..n]. We define

• D+(i, j, k) be the minimum SP-cost of aligning suffixes v1[i..n],v2[j..n],v3[k..n],

• d+p,q(i, j) be the cost of the induced pairwise alignment of vp[i..n],vq[j..n] (where 1 ≤
p < q ≤ 3) of the optimal multiple alignment of v1[i..n],v2[j..n],v3[k..n],

• D+
p,q(i, j) be the minimum cost of aligning vp[i..n],vq[j..n] (where 1 ≤ p < q ≤ 3).

Again, we have d+p,q(i, j) ≥ D+
p,q(i, j), D

+(i, j, k) = d+1,2(i, j) + d+1,3(i, k) + d+2,3(j, k) and thus

D+(i, j, k) = d+1,2(i, j) + d+1,3(i, k) + d+2,3(j, k) ≥ D+
1,2(i, j) +D+

1,3(i, k) +D+
2,3(j, k). (3)

The cost of the optimal alignment passing through (i, j, k) is D(i, j, k) + D+(i, j, k) (this
should remind you of the Hirschberg algorithm!). Combining these two previous results, we
get

D(i, j, k) +D+(i, j, k) ≥ D(i, j, k) +D+
1,2(i, j) +D+

1,3(i, k) +D+
2,3(j, k). (4)

Now, suppose we have alignment of v1,v2,v3 with cost z. Note that we do not know
anything about the quality of this alignment. If

D(i, j, k) +D+
1,2(i, j) +D+

1,3(i, k) +D+
2,3(j, k) > z

then we know that
D(i, j, k) +D+(i, j, k) > z.

In other words, if we force the alignment to go through (i, j, k) we will get a score that is
worse than z. Hence, the optimal alignment will not pass through (i, j, k). The cool thing
about this procedure is that D+

1,2(i, j)+D+
1,3(i, k)+D+

2,3(j, k) can be computed in O(n2) time.
How do we go about finding an alignment with cost z? We have to resort to heuristics.

3 Tree and Star Alignments

In general, heuristics come with no hard, theoretical guarantees on their worst-case perfor-
mance. For instance, the greedy progressive alignment algorithm that we will see in class
has no such guarantees. In other words, we do not know how far off the cost of the returned
solution is from the optimal cost. In this section, we will describe a constant-factor approx-
imation algorithm that comes with theoretical guarantees on its performance. That is, the
cost of a returned solution is at most a constant factor more than the optimal cost.

Let v1, . . . ,vk ∈ Σ∗ be our input strings. Recall that D(vi,vj) is the optimal (weighted)
edit distance between vi, and vj. We start with the following key definition.

3

Definition 1. Let T be a tree with k nodes, where each node is labeled with a distinct string
from {v1, . . . ,vk}. Then, a multiple alignment A of v1, . . . ,vk is called consistent with T if
the induced pairwise alignment of vi, and vj has cost D(vi,vj) for each edge (vi,vj) of T .

The following theorem states that it is easy to compute an alignment that is consistent
with a given tree T .

Theorem 1 (Gusfield [1]). Let T be a tree whose k nodes are each labeled by a distinct string
from {v1, . . . ,vk}. We can compute an alignment A(T) of v1, . . . ,vk that is consistent with
T in O(k2n2) time.

Proof. We will prove this theorem by constructing A(T) one string at a time. We will show
that the theorem holds, by proving inductively that adding each string vi while maintaining
consistency takes O(in2) time. The base case i = 2 is trivial, amounting to a pairwise
alignment of v1 and v2 that by definition is consistent with a tree T that connects the
two vertices by a single edge. Computing the optimal pairwise alignment takes O(in2) =
O(2n2) = O(n2) time.

As for the step i > 2, by the induction hypothesis we are given a tree T ′ that is consistent
with strings v1,v2, . . . ,vi−1. Let vi be a string adjacent in T ′ to one of v1,v2, . . . ,vi−1. Let vj

be the vertex that is adjacent to vi in T ′. Let v̄j denote the gapped sequence corresponding to
vj in the multiple alignment A(T ′). We align v̄j and vi with the added rule that δ(−,−) = 0.
That is, two opposing gaps have a cost of 0.

Let v̄′
j and v̄i be the two resulting gapped sequences. If the optimal alignment does not

insert any new gaps into v̄j then we add v̄i to A(T ′). The result is a multiple alignment with
one more string, where the induced cost of v̄′

j and v̄i equals D(vj,vi) and where the induced
costs from the previous alignment remain unchanged. However, if the optimal alignment
inserted a new gap into v̄j between characters l and l+1, we insert a gap between columns l
and l+1 in each sequence of the original multiple alignment A(T ′). Observe that the induced
costs of the original alignment remain unchanged, whereas the induced alignment of v̄′

j and
v̄i has cost D(vj,vi). Thus, the new alignment is consistent with the tree T extended by the
edge (vj,vi). As for the running time, observe that the given alignment A(T ′) composed of
(i − 1) sequences has a length of at most (i − 1)n (recall that length of pairwise alignment
of two sequences of length m and n is at most m + n). Thus, worst case, v̄j has length
(i− 1)n = O(in) while vi has length n. Thus, it takes O(in2) time to compute v̄′

j and v̄i.

The total running time is
󰁓k−1

i=1 O(in2) = O(k2n2). Hence, we can compute an alignment
A(T) of v1, . . . ,vk that is consistent with T in O(k2n2) time.

3.1 Star Alignment

We say that a cost function δ : (Σ∪ {−})× (Σ∪ {−}) → R satisfies the triangle inequality if

δ(x, z) ≤ δ(x, y) + δ(y, z). (5)

Recall that D(vi,vj) is the optimal (weighted) edit distance between vi and vj. We have
the following definition.

4

Definition 2. Given strings v1, . . . ,vk ∈ Σ∗, the center string vc (where c ∈ [k]) is the
input string that minimizes

󰁓k
i=1 D(vc,vi). The center star is a star tree of k nodes with the

center node labeled by vc and each of the remaining k − 1 nodes labeled by a distinct string
from {v1, . . . ,vk} \ {vc}.

We use the previous theorem to obtain an alignment Ac of v1, . . . ,vk consistent with the
center star. Let d(vi,vj) denote the pairwise alignment cost of vi and vj induced by Ac.
Clearly, d(vi,vj) ≥ D(vi,vj). We introduce the shorthand d(Ac) =

󰁓
i<j d(vi,vj).

Lemma 1. Let δ be a cost function that satisfies the triangle inequality. Then, for any input
string vi and vj, it holds that d(vi,vj) ≤ d(vi,vc) + d(vc,vj) = D(vi,vc) +D(vc,vj).

Proof. Consider any column of Ac. Let x, y and z be the characters in this columns of strings
i, c and j, respectively. By the triangle inequality, we have that δ(x, z) ≤ δ(x, y) + δ(y, z).
Thus, d(vi,vj) ≤ d(vi,vc) + d(vc,vj). By Theorem 1 it follows that d(vi,vc) + d(vc,vj) =
D(vi,vc) +D(vc,vj).

Let A∗ be the optimal alignment of strings v1, . . . ,vk with cost d(A∗).

Theorem 2. d(Ac)/d(A
∗) ≤ 2(k − 1)/k < 2.

Proof. We start by defining

f(Ac) =
󰁛

(i,j)∈[k]2 :
i ∕=j

d(vi,vj) and f(A∗) =
󰁛

(i,j)∈[k]2 :
i ∕=j

d∗(vi,vj). (6)

Clearly, 2d(A∗) = f(A∗) and 2d(Ac) = f(Ac). Recalling that D(vi,vj) is the optimal
(weighted) edit distance between vi and vj, we have by the previous lemma that

f(Ac) =
󰁛

(i,j)∈[k]2 :
i ∕=j

d(vi,vj) (7)

≤
󰁛

(i,j)∈[k]2 :
i ∕=j

[D(vi,vc) +D(vc,vj)]. (8)

Observe that for any fixed j, the terms D(vc,vj) and D(vj,vc) show up 2(k − 1) times.
Furthermore, observe that D(vc,vj) = D(vj,vc). Thus, we have

f(Ac) ≤
k󰁛

(i,j)∈[k]2 :
i ∕=j

[D(vi,vc) +D(vc,vj)] = (2k − 1)
k󰁛

j=1

D(vc,vj). (9)

5

From the other side, we have

f(A∗) =
󰁛

(i,j)∈[k]2 :
i ∕=j

d∗(vi,vj) (10)

≥
󰁛

(i,j)∈[k]2 :
i ∕=j

D(vi,vj) (11)

=
k󰁛

i=1

k󰁛

j=1

D(vi,vj) (12)

Now, the crucial observation is that the sum
󰁓k

i=1

󰁓k
j=1 D(vi,vj) of the minimum costs of

all ordered pairs of strings equals summing the cost of k different stars, each centered around
one of the k input strings. We picked vc such that it was the star with smallest cost. Thus,
we have

f(A∗) ≥
k󰁛

i=1

k󰁛

j=1

D(vi,vj) (13)

≥ k
k󰁛

j=1

D(vc,vj) (14)

Hence, we have

d(Ac)

d(A∗)
=

f(Ac)

f(A∗)
≤

(2k − 1)
󰁓k

j=1 D(vc,vj)

k
󰁓k

j=1 D(vc,vj)
=

2(k − 1)

k
< 2. (15)

References

[1] Dan Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology. Cambridge University Press, New York, NY, USA, 1997.

6

