# CS 466 Introduction to Bioinformatics Lecture 1 

Mohammed El-Kebir

## August 27, 2018



## In case of an emergency...

Emergencies can happen anywhere and at any time, so it's important that we take a minute to prepare for a situation in which our safety could depend on our ability to react quickly. Take a moment to learn the different ways to leave this building. If there's ever a fire alarm or something like that, you'll know how to get out and you'll be able to help others get out. Next, figure out the best place to go in case of severe weather - we'll need to go to a low-level in the middle of the building, away from windows. And finally, if there's ever someone trying to hurt us, our best option is to run out of the building. If we cannot do that safely, we'll want to hide somewhere we can't be seen, and we'll have to lock or barricade the door if possible and be as quiet as we can. We will not leave that safe area until we get an Illini-Alert confirming that it's safe to do so. If we can't run or hide, we'll fight back with whatever we can get our hands on. If you want to better prepare yourself for any of these situations, visit police.illinois.edu/safe. Remember you can sign up for emergency text messages at emergency.illinois.edu.

## Course Staff

## Instructor:

- Mohammed El-Kebir (melkebir)
- Office hours: Mondays, 3:15-4:15pm


## TA:

- Anusri Pampari (pampari2)
- Office hours: TBD


## Course Organization

## Course website:

www.el-kebir.net/teaching/cs466

## AN INTRODUCTION TO

BIOINFORMATICS ALGORITHMS

## Syllabus:

- Prerequisites: CS 225 and its prerequisites
- Textbook


## Grading:

- 5 written/programming assignments
- Midterm
- Final
- Research project


## Piazza: (please sign up)

- https://piazza.com/class\#fall2018/cs466


## Course Objectives

## Learn:

- Learn underlying ideas of common algorithms in bioinformatics.
- Learn to translate a biological problem into a computational problem.
- Learn to read scientific papers, propose and conduct independent research.


## Not learn:

- Will not learn to run popular bioinformatics packages.
- Will not learn how to program.


## Homework Assignments

- 5 homework assignments
- Each homework assignment is a combination of written/programming exercises
- LaTeX highly recommended for homework assignments
- Please use Python for programming exercises


## Late policy:

- Students may request one 3-day extension in the semester for full credit
- Late submission within 3 days 80\%


## Primer on Molecular Biology

Molecular Biology is the field of biology that studies the composition, structure and interactions of cellular molecules - such as nucleic acids and proteins - that carry out the biological processes essential for the cell's functions and maintenance.

Cellular molecules:

1. DNA
2. RNA
3. Protein

## DNA

Each strand composed of sequence of covalently bonded nucleotides (bases).


## Four nucleotides:

A (adenine)
C (cytosine)
T (thymine)
G (guanine)
$\mathrm{A} \leftrightarrow \rightarrow \mathrm{T}, \quad \mathrm{C} \leftrightarrow \rightarrow \mathrm{G}$ Watson-Crick base-pairing

## DNA

Each strand composed of sequence of covalently bonded nucleotides (bases).


| Pair of strings |
| :---: |
| from 4 character |
| alphabet |

5' ...ACGTGACTGAGGACCGTG CGACTGAGACTGACTGGGT CTAGCTAGACTACGTTTTA TATATATATACGTCGTCGT ACTGATGACTAGATTACAG

> Single string from 4 character alphabet TGATTTTAAAAAAATATT... $\mathbf{3}^{\prime}$

## RNA



- Single-stranded
- A (adenine)
- C (cytosine)
- U (uracil)
- G (guanine)
- Can fold into structures due to base complementarity.

$$
\mathrm{A} \leftrightarrow \rightarrow \mathrm{U}, \quad \mathrm{C} \leftarrow \rightarrow \mathrm{G}
$$

- Comes in many flavors:
mRNA, rRNA, tRNA, tmRNA, snRNA, snoRNA, scaRNA, aRNA, asRNA, piwiRNA, etc.


## Protein

- String of amino acids: 20 letter alphabet


## ...DTIGDWNSPSFFGIQLVSSVHT TLWYRENAFPVLGGFSWLSWFNW HNMGYYYPVYHIGYPMIRCGTHL VPMQFAFQSIARSFALVHWNAPM VLKINPHERQDPVFWPCLYYSVD IRSMHIGYPMIRCYQA...

| Amino Acid | 3-Letters | 1-Letter |
| :---: | :---: | :---: |
| Alanine | Ala | A |
| Arginine | Arg | R |
| Asparagine | Asn | N |
| Aspartic acid | Asp | D |
| Cysteine | Cys | C |
| Glutamic acid | Glu | E |
| Glutamine | Gln | Q |
| Glycine | Gly | G |
| Histidine | His | H |
| Isoleucine | Ile | I |
| Leucine | Leu | L |
| Lysine | Lys | K |
| Methionine | Met | M |
| Phenylalanine | Phe | F |
| Proline | Pro | P |
| Serine | Ser | S |
| Threonine | Thr | T |
| Tryptophan | Trp | W |
| Tyrosine | Tyr | Y |
| Valine | Val | V |

## Protein

- String of amino acids: 20 letter alphabet
- Folds into 3D structures to perform various functions in cells



## Primer on Molecular Biology

## Three fundamental molecules:

1. DNA

Information storage.
2. RNA

Old view: Mostly a "messenger". New view: Performs many important functions.
3. Protein

Perform most cellular functions (biochemistry, signaling, control, etc.)


## Central Dogma of Molecular Biology



## Transcription and Translation


http://dna-rna.net/wp-content/uploads/2011/08/rnatranscription2.jpg

http://www.frontiers-in-
genetics.org/en/pictures/translation_1.jpg

## Transcription and Translation


https://www.khanacademy.org/science/biology/gene-expression-central-dogma/transcription-of-dna-into-rna/a/overview-of-transcription

Second base

|  | U | c | A | G |
| :---: | :---: | :---: | :---: | :---: |
| U | $\begin{aligned} & \text { UUU_Phenyl- } \\ & \text { UUC } \\ & \text { UUA } \\ & \text { UUA } \\ & \text { UUG_-Leucine L } \end{aligned}$ | $\left.\begin{array}{l} \text { UCU } \\ \text { UCC } \\ \text { UCA } \\ \text { UCG } \end{array}\right] \text { Serine }$ | UAU Tyrosine $Y$ <br> UAC  <br> UAA Stop codon <br> UAG Stop codon | $\begin{aligned} & \text { UGU } \\ & \text { UGC } \\ & \text { UGA Systeine } C \\ & \text { UGG Tryp codon } \\ & \text { UGG Tryptophan } \\ & \hline \end{aligned}$ |
| C | $\left.\begin{array}{l} \text { CUU } \\ \text { CUC } \\ \text { CUA } \\ \text { CUG } \end{array}\right] \text {-Leucine L }$ | $\left.\begin{array}{l} \text { CCU } \\ \text { CCC } \\ \text { CCA } \\ C C G \end{array}\right] \text {-Proline }$ | $\begin{aligned} & \text { CAU - Histidine } \mathrm{H} \\ & \text { CAC } \\ & \text { CAA } \\ & \text { CAG-Glutamine } \end{aligned}$ | $\left.\begin{array}{l}\text { CGU } \\ \text { CGC } \\ \text { CGA } \\ \text { CGG }\end{array}\right]$ Arginine $R$ |
| A | $\left.\begin{array}{l} \text { AUU } \\ \text { AUC } \\ \text { AUA } \end{array}\right] \text { I Isoleucine }$ | $\left.\begin{array}{l} \text { ACU } \\ \text { ACC } \\ \text { ACA } \\ \text { ACG } \end{array}\right] \text { Threonine }$ | $\begin{aligned} & \text { AAU ]-Asparagine } \\ & \text { AAC } \\ & \text { AAA } \\ & \text { AAG-Lysine } \\ & K \end{aligned}$ | $\begin{aligned} & \text { AGU-Serine } \mathrm{S} \\ & \text { AGC } \\ & \text { AGA } \\ & \text { AGG-Arginine } \\ & R \end{aligned}$ |
| G | $\left.\begin{array}{l} \text { GUU } \\ \text { GUC } \\ \text { GUA } \\ \text { GUG } \end{array}\right] \text {-Valine }$ | $\left.\begin{array}{l} \text { GCU } \\ \text { GCC } \\ \text { GCA } \\ \text { GCG } \end{array}\right] \text { Alanine }$ | $\begin{aligned} & \text { GAU-Aspartic } \\ & \text { GAC acid D } \\ & \text { GAA Glutamic } \\ & \text { GAG] acid E } \end{aligned}$ |  |

http://bioinfo.bisr.res.in/project/crat/pictures/codon.jpg

## What is Computational Biology/Bioinformatics?

> Computational biology and bioinformatics is an interdisciplinary field that develops and applies computational methods to analyze large collections of biological data, such as genetic sequences, cell populations or protein samples, to make new predictions or discover new biology.

## Technology and Bioinformatics are Transforming Biology

Until late $20^{\text {th }}$ Century

$\qquad$
Hypothesis Generation and Validation
$21^{\text {th }}$ Century and Beyond


## Algorithms

Hypothesis Generation and Validation

High throughput technologies

## A Deluge of Data

## Cost per Genome



## A Deluge of Data



## A Deluge of Data

## Biologists propose to sequence the DNA of all life on

 EarthBy Elizabeth Pennisi | Feb. 24, 2017, 1:15 PM

Outer ring color scheme:
Red: Completed genome Light Blue: Low resolution genome


Question: What does it mean that we can sequence a genome?

## No technology exists that can sequence a complete (human) genome from end to end!



Next-generation
DNA sequencing


Making sense of this data absolutely requires the use and development of algorithms!

## Why Study Computational Biology?

## Interdisciplinary

 BiologyComputer Science
Mathematics
Statistics
= FUN!


Why choose just 1?

## Best Jobs

1. Actuary
2. Audiologist
3. Mathematician
4. Statistician
5. Biomedical Engineer
6. Data Scientist
7. Dental Hygienist
8. Software Engineer
9. Occupational Therapist
10. Computer Systems

Analyst

Worst Jobs
200. Newspaper reporter
199. Lumberjack
198. Enlisted Military Personnel
197. Cook
196. Broadcaster
195. Photojournalist
194. Corrections Officer
193. Taxi Driver
192. Firefighter
191. Mail Carrier


Donald Knuth
Professor emeritus of Computer Science at Stanford University Turing Award winner
"father of the analysis of algorithms."
"I can't be as confident about computer science as I can about biology. Biology easily has 500 years of exciting problems to work on. It's at that level."

## Course Topic \#1: Sequence Alignment

## Question: How do we compare two genes/genomes?



Human Genome:
...ACTCGACTGAGAGGATTTCGAGCATGA...

$$
\approx 3.2 \times 10^{9} \mathrm{bp}
$$



Mouse Genome:
...ACTCAACTGAGATTCGAGCTTCAATGA...
$\approx 2.8 \times 10^{9} \mathrm{bp}$

## Course Topic \#2: Genome Assembly



Question: How do we put all the pieces back together?


## Course Topic \#3: Phylogenetics

Phylogenetic Tree of Life


Poly-clonal tumor at sampling


## Question: Can we reconstruct the evolutionary history of different species?

Classical phylogenetic tree


Clonal evolution tree


## Course Topic \#4: Pattern Matching

Question: How do we start to make sense of all these sequences?

http://www.genomebiology.com/2009/10/3/R25/figure/F1?highres=y

Motif Finding


## Course Topic \#4: Pattern Matching

Question: How do we start to make sense of all these sequences?

http://www.genomebiology.com/2009/10/3/R25/figure/F1?highres=y

Motif Finding


## Course Topic \#5: Cancer Genomics




Tumor


Question: How can we analyze available data to determine what drives tumor growth and how to treat or prevent it?

## Course Topics

1. Sequence alignment
'How do we compare two genes/genomes?'
2. Genome assembly
'How do we put all the pieces back together?'
3. Phylogenetics
'What is the evolutionary history of different sequences?'
4. Pattern matching
'How do we start to make sense out of all these sequences?'
5. Cancer genomics
'How do we identify what drives tumor growth and how to treat/prevent it?'

## Course Topics

1. Sequence alignment

Dynamic programming: edit distance
2. Genome assembly

Graphs: de Bruijn graph, Eulerian and Hamiltonian paths
3. Phylogenetics

Trees and distances: distance matrices, neighbor joining, hierarchical clustering.
Phylogenies: Sankoff/Fitch algorithms, perfect phylogeny and compatibility
4. Pattern matching

Suffix trees/arrays. Burrows-Wheeler transform, Hidden Markov Models (HMMs)
5. Cancer genomics

Cancer phylogenies: Integer linear optimization and graph algorithms

## Problem != Algorithm

Problem $\Pi$ with instance $X$ and solution set $\Pi(X)$ :

- Decision problem:
- Is $\Pi(X)=\varnothing$ ?
- Optimization problem:
- Find $y^{*} \in \Pi(X)$ s.t. $f\left(y^{*}\right)$ is optimum.
- Counting problem:
- Compute $|\Pi(X)|$.
- Sampling problem:
- Sample uniformly from $\Pi(X)$.
- Enumeration problem:
- Enumerate all solutions in $\Pi(X)$


## Algorithms:

Set of instructions for solving problem.

- Exact
- Heuristic


## The Change Problem

- Suppose we have three coins:

- What is the minimum number of coins needed to make change for $\boldsymbol{M}$ cents?


## The Change Problem

- Suppose we have three coins:

- What is the minimum number of coins needed to make change for $\boldsymbol{M}$ cents?

Change Problem: Given coins $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right)$ and amount $M$, find $\mathbf{d}=\left(d_{1}, \ldots, d_{n}\right) \in \mathbb{N}^{n}$ such that:
(i) $M=\sum_{i=1}^{n} c_{i} d_{i}$ and (ii) $\sum_{i=1}^{n} d_{i}$ is minimum.

Idea \#1: Choose largest coin possible
GreedyChange $\left(M, c_{1}, \ldots, c_{n}\right)$

1. while $M>0$
2. $\quad x \leftarrow$ largest coin $c_{i}$ possible such that $c_{i} \leq M$
3. $M \leftarrow M-x$

Idea \#1: Choose largest coin possible
GreedyChange $\left(M, c_{1}, \ldots, c_{n}\right)$

1. while $M>0$
2. $x \leftarrow$ largest coin $c_{i}$ possible such that $c_{i} \leq M$
3. $M \leftarrow M-x$

Is this a good algorithm?

Idea \#1: Choose largest coin possible
GreedyChange $\left(M, c_{1}, \ldots, c_{n}\right)$

1. while $M>0$
2. $\quad x<$ largest coin $c_{i}$ possible such that $c_{i} \leq M$
3. $M \leftarrow M-x$

Is this a good algorithm? Two properties of a good algorithm:

Correctness: gives the correct output for any input.

- Seem to work for $\mathbf{c}=(5,3,1)$.
- But what about $\mathbf{c}=(5,4,1)$ and $M=8$ ?

Efficient: running time of the algorithm does not increase to rapidly with input size.

Idea \#2: Don’t be smart, apply brute force
Change Problem: Given coins $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right)$ and amount $M$, find $\mathbf{d}=\left(d_{1}, \ldots, d_{n}\right) \in \mathbb{N}^{n}$ such that:
(i) $M=\sum_{i=1}^{n} c_{i} d_{i}$ and (ii) $\sum_{i=1}^{n} d_{i}$ is minimum.


- Check all possible solutions:
- $11=5+5+1$
- $11=5+4+1+1$
- $11=5+1+1+1+1+1+1$

Correct? yes Efficient? no

- $11=4+4+1+1+1$
- ...

Idea \#3: Recursion


## Optimal substructure:

Optimal solution is obtained from optimal solutions of subproblems

## Idea \#3: Recursion



- This example can be expressed using a recurrence relation
- Let minNumCoins( $M$ ) be the minimum number of coins to make change for $M$ cents

$$
\operatorname{minNumCoins}(M)=\min \left\{\begin{array}{l}
\operatorname{minNumCoins}(M-1)+1 \\
\operatorname{minNumCoins}(M-3)+1 \\
\operatorname{minNumCoins}(M-5)+1
\end{array}\right.
$$

## Idea \#3: Recursion

Change Problem: Given coins $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right)$ and amount $M$, find $\mathbf{d}=\left(d_{1}, \ldots, d_{n}\right) \in \mathbb{N}^{n}$ such that:
(i) $M=\sum_{i=1}^{n} c_{i} d_{i}$ and (ii) $\sum_{i=1}^{n} d_{i}$ is minimum.

$$
\operatorname{minNumCoins}(M)=\min \left\{\begin{array}{l}
\operatorname{minNumCoins}\left(M-c_{1}\right)+1 \\
\operatorname{minNumCoins}\left(M-c_{2}\right)+1 \\
\ldots \\
\operatorname{minNumCoins}\left(M-c_{n}\right)+1
\end{array}\right.
$$

## Idea \#3: Recursion

Given coins $\mathbf{c}=(1,3,7)$ and amount $M=77$, find $\mathbf{d}=\left(d_{1}, \ldots, d_{n}\right) \in \mathbb{N}^{n}$ such that: (i) $M=\sum_{i=1}^{n} c_{i} d_{i}$ and (ii) $\sum_{i=1}^{n} d_{i}$ is minimum.

$$
\begin{aligned}
& \operatorname{minNumCoins}(77)=\min \left\{\begin{array}{l}
\operatorname{minNumCoins}(77-1)+1 \\
\operatorname{minNumCoins}(77-3)+1 \\
\operatorname{minNumCoins}(77-7)+1
\end{array}\right. \\
& \operatorname{minNumCoins}(76)=\min \left\{\begin{array}{l}
\operatorname{minNumCoins}(76-1)+1, \\
\operatorname{minNumCoins}(76-3)+1, \\
\operatorname{minNumCoins}(76-7)+1,
\end{array}\right. \\
& \vdots \\
& \operatorname{minNumCoins}(7)=1 \\
& \operatorname{minNumCoins}(3)=1 \\
& \operatorname{minNumCoins}(1)=1
\end{aligned}
$$

## Idea \#3: Recursion

RecursiveChange $\left(M, c_{1}, \ldots, c_{n}\right)$

1. if $M=0$
2. return 0
3. bestNumCoins $\leftarrow \infty$
4. for $i \leftarrow 1$ to $n$
5. if $M \geq c_{i}$
6. numCoins $\leftarrow$ RecursiveChange $\left(M-c_{i}, c_{1}, \ldots, c_{n}\right)$
7. if numCoins $+1<$ bestNumCoins
8. bestNumCoins $\leftarrow$ numCoins + 1
9. return bestNumCoins


## Correct but inefficient:

Same subproblem is solved many times!

## Idea \#3: Recursion

RecursiveChange $\left(M, c_{1}, \ldots, c_{n}\right)$

1. if $M=0$
2. return 0
3. bestNumCoins $\leftarrow \infty$
4. for $i \leftarrow 1$ to $n$
5. if $M \geq c_{i}$
6. numCoins $\leftarrow$ RecursiveChange ( $M-c_{i}, c_{1}, \ldots, c_{n}$ )
7. if numCoins $+1<$ bestNumCoins
8. bestNumCoins $\leftarrow$ numCoins +1
9. return bestNumCoins


## Correct but inefficient:

Same subproblem is solved many times!

## Solutions:

- Remember previously computed values: memoization - Bottom up computation: dynamic programming


## Idea \#4: Solve recurrence with dynamic programming

Fill in table "bottom up": from smallest to largest.


$$
\operatorname{minNumCoins}(M)=\min \left\{\begin{array}{l}
\operatorname{minNumCoins}(M-1)+1 \\
\operatorname{minNumCoins}(M-3)+1 \\
\operatorname{minNumCoins}(M-5)+1
\end{array}\right.
$$

Only one coin is needed to make change for the values 1,3 and 5

## Idea \#4: Solve recurrence with dynamic programming

Fill in table "bottom up": from smallest to largest.


$$
\operatorname{minNumCoins}(M)=\min \left\{\begin{array}{l}
\operatorname{minNumCoins}(M-1)+1 \\
\operatorname{minNumCoins}(M-3)+1 \\
\operatorname{minNumCoins}(M-5)+1
\end{array}\right.
$$

Two coins are needed to make change for the values 2,4 and 6

## Idea \#4: Solve recurrence with dynamic programming

Fill in table "bottom up": from smallest to largest.


$$
\operatorname{minNumCoins}(M)=\min \left\{\begin{array}{l}
\operatorname{minNumCoins}(M-1)+1 \\
\operatorname{minNumCoins}(M-3)+1 \\
\operatorname{minNumCoins}(M-5)+1
\end{array}\right.
$$

Three coins are needed to make change for the value 7

Idea \#4: Solve recurrence with dynamic programming
Fill in table "bottom up": from smallest to largest.


$$
\operatorname{minNumCoins}(M)=\min \left\{\begin{array}{l}
\operatorname{minNumCoins}(M-1)+1 \\
\operatorname{minNumCoins}(M-3)+1 \\
\operatorname{minNumCoins}(M-5)+1
\end{array}\right.
$$

Optimal substructure: Optimal solution obtained from optimal subsolutions

Idea \#4: Solve recurrence with dynamic programming
Fill in table "bottom up": from smallest to largest.


$$
\operatorname{minNumCoins}(M)=\min \left\{\begin{array}{l}
\operatorname{minNumCoins}(M-1)+1 \\
\operatorname{minNumCoins}(M-3)+1 \\
\operatorname{minNumCoins}(M-5)+1
\end{array}\right.
$$

Optimal substructure: Optimal solution obtained from optimal subsolutions

## Idea \#4: Solve recurrence with dynamic programming

Change Problem: Given coins $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right)$ and amount $M$, find $\mathbf{d}=\left(d_{1}, \ldots, d_{n}\right) \in \mathbb{N}^{n}$ such that:
(i) $M=\sum_{i=1}^{n} c_{i} d_{i}$ and (ii) $\sum_{i=1}^{n} d_{i}$ is minimum.

DPChange $\left(M, c_{1}, \ldots, c_{n}\right)$

1. for $m \leftarrow 1$ to $M$
2. minNumCoins $\left[c_{i}\right] \leftarrow \infty$
3. for $i \leftarrow 1$ to $n$
4. $\operatorname{minNumCoins}\left[c_{i}\right] \leftarrow 1$
5. for $m \leftarrow 1$ to $M$

6. $\operatorname{minNumCoins}[m] \leftarrow 1+\min _{i=1}^{n}\left\{\operatorname{minNumCoins}\left[m-c_{i}\right]\right\}$
7. return minNumCoins[ $M$ ]

Correct? yes Efficient? yes

## Different algorithm techniques

Change Problem: Given coins $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right)$ and amount $M$, find $\mathbf{d}=\left(d_{1}, \ldots, d_{n}\right) \in \mathbb{N}^{n}$ such that:
(i) $M=\sum_{i=1}^{n} c_{i} d_{i}$ and (ii) $\sum_{i=1}^{n} d_{i}$ is minimum.

| Technique | Correct? | Efficient? |
| :--- | :--- | :--- |
| Greedy algorithm <br> [GreedyChange] | no | yes |
| Exhaustive enumeration <br> [ExhaustiveChange] | yes | no |
| Recursive algorithm <br> [RecursiveChange] | yes | no |
| Dynamic programming <br> [DPChange] | yes | yes |

## Summary

- DNA, RNA and proteins are sequences
- Central dogma of molecular biology: DNA -> RNA -> protein
- Problem != algorithm
- Different algorithm techniques
- Greedy
- Exhaustive search/brute force
- Recursive algorithm
- Dynamic programming algorithm
- Reading:
- "Biology for Computer Scientists" by Lawrence Hunter (http://www.el-kebir.net/teaching/CS466/Hunter_BIO_CS.pdf)
- Jones and Pevzner: Chapters 2.1, 2.3, 2.4, 6.2


## Sources

- CS 362 by Layla Oesper (Carleton College)
- CS 1810 by Ben Raphael (Brown/Princeton University)
- An Introduction to Bioinformatics Algorithms book (Jones and Pevzner)

