CS 466 Introduction to Bioinformatics Lecture 1

Mohammed El-Kebir

August 27, 2018

In case of an emergency...

Emergencies can happen anywhere and at any time, so it's important that we take a minute to prepare for a situation in which our safety could depend on our ability to react quickly. Take a moment to learn the different ways to leave this building. If there's ever a fire alarm or something like that, you'll know how to get out and you'll be able to help others get out. Next, figure out the best place to go in case of severe weather – we'll need to go to a low-level in the middle of the building, away from windows. And finally, if there's ever someone trying to hurt us, our best option is to run out of the building. If we cannot do that safely, we'll want to hide somewhere we can't be seen, and we'll have to lock or barricade the door if possible and be as quiet as we can. We will not leave that safe area until we get an Illini-Alert confirming that it's safe to do so. If we can't run or hide, we'll fight back with whatever we can get our hands on. If you want to better prepare yourself for any of these situations, visit *police.illinois.edu/safe*. Remember you can sign up for emergency text messages at emergency.illinois.edu.

Course Staff

Instructor:

- Mohammed El-Kebir (melkebir)
- Office hours: Mondays, 3:15-4:15pm

TA:

- Anusri Pampari (pampari2)
- Office hours: TBD

Developing combinatorial algorithms for studying all stages of cancer progression.

Course Organization

Course website:

www.el-kebir.net/teaching/cs466

Syllabus:

- Prerequisites: CS 225 and its prerequisites
- Textbook

Grading:

- 5 written/programming assignments
- Midterm
- Final
- Research project

Piazza: (please sign up)

https://piazza.com/class#fall2018/cs466

Course Objectives

Learn:

- Learn underlying ideas of common algorithms in bioinformatics.
- Learn to translate a biological problem into a computational problem.
- Learn to read scientific papers, propose and conduct independent research.

Not learn:

- Will not learn to run popular bioinformatics packages.
- Will not learn how to program.

Homework Assignments

- 5 homework assignments
- Each homework assignment is a combination of written/programming exercises
- LaTeX highly recommended for homework assignments
- Please use Python for programming exercises

Late policy:

- Students may request one 3-day extension in the semester for full credit
- Late submission within 3 days 80%

Primer on Molecular Biology

Molecular Biology is the field of biology that studies the composition, structure and interactions of cellular molecules – such as nucleic acids and proteins – that carry out the biological processes essential for the cell's functions and maintenance.

https://www.nature.com/subjects/molecular-biology

Cellular molecules: 1. DNA

- 2. RNA
- 3. Protein

DNA

Each strand composed of sequence of covalently bonded nucleotides (bases).

Four nucleotides:

A (adenine) C (cytosine) T (thymine) G (guanine)

 $A \leftarrow \rightarrow T$, $C \leftarrow \rightarrow G$ Watson-Crick base-pairing

DNA

Each strand composed of sequence of covalently bonded nucleotides (bases).

^{5'} ...ACGTGACTGAGGACCGTG...^{3'}
...|||||||||||||||...
...TGCACTGACTCCTGGCAC...
3'

Pair of strings from 4 character alphabet

5' ...ACGTGACTGAGGACCGTG CGACTGAGACTGACTGGGT CTAGCTAGACTACGTTTTA TATATATATACGTCGTCGT ACTGATGACTAGATTACAG TGATTTTAAAAAAATATT... 3'

Single string from 4 character alphabet RNA

Single-stranded

- A (adenine)
- C (cytosine)
- U (uracil)
- G (guanine)
- Can fold into structures due to base complementarity. $A \leftarrow \rightarrow U, C \leftarrow \rightarrow G$

• Comes in many flavors:

mRNA, rRNA, tRNA, tmRNA, snRNA, snRNA, snoRNA, scaRNA, aRNA, asRNA, piwiRNA, etc.

Protein

• String of amino acids: 20 letter alphabet

...DTIGDWNSPSFFGIQLVSSVHT TLWYRENAFPVLGGFSWLSWFNW HNMGYYYPVYHIGYPMIRCGTHL VPMQFAFQSIARSFALVHWNAPM VLKINPHERQDPVFWPCLYYSVD IRSMHIGYPMIRCYQA...

Amino Acid	3-Letters	1-Letter
Alanine	Ala	A
Arginine	Arg	R
Asparagine	Asn	Ν
Aspartic acid	Asp	D
Cysteine	Cys	С
Glutamic acid	Glu	E
Glutamine	Gln	Q G
Glycine	Gly	G
Histidine	His	Н
Isoleucine	Ile	Ι
Leucine	Leu	L
Lysine	Lys	K
Methionine	Met	М
Phenylalanine	Phe	F
Proline	Pro	Р
Serine	Ser	S
Threonine	Thr	Т
Tryptophan	Trp	W
Tyrosine	Tyr	Y
Valine	Val	V

Protein

- String of amino acids: 20 letter alphabet
- Folds into 3D structures to perform various functions in cells

Primer on Molecular Biology

Three fundamental molecules:

1. DNA

Information storage.

2. RNA

Old view: Mostly a "messenger". New view: Performs many important functions.

3. Protein

Perform most cellular functions (biochemistry, signaling, control, etc.)

-O-O Protein

Transcription and Translation

http://dna-rna.net/wp-content/uploads/2011/08/rnatranscription2.jpg

http://www.frontiers-ingenetics.org/en/pictures/translation_1.jpg

Transcription and Translation

https://www.khanacademy.org/science/biology/geneexpression-central-dogma/transcription-of-dna-intorna/a/overview-of-transcription

http://bioinfo.bisr.res.in/project/crat/pictures/codon.jpg

What is Computational Biology/Bioinformatics?

Computational biology and **bioinformatics** is an interdisciplinary field that develops and applies **computational methods** to analyze large collections of biological data, such as genetic sequences, cell populations or protein samples, to make new predictions or **discover new biology**.

https://www.nature.com/subjects/computational-biology-and-bioinformatics

Technology and Bioinformatics are Transforming Biology

Until late 20th Century

Hypothesis Generation and Validation

21th Century and Beyond

High throughput technologies

A Deluge of Data

A Deluge of Data

A Deluge of Data

Biologists propose to sequence the DNA of all life on Earth

Question: What does it mean that we can sequence a genome?

No technology exists that can sequence a complete (human) genome from end to end!

Making sense of this data absolutely requires the use and development of **algorithms**!

Why Study Computational Biology?

Interdisciplinary

- Biology
- **Computer Science**
- Mathematics
- Statistics = FUN!

Why choose just 1?

Best Jobs	Worst Jobs
1. Actuary	200. Newspaper reporter
2. Audiologist	199. Lumberjack
3. Mathematician	198. Enlisted Military Personnel
4. Statistician	197. Cook
5. Biomedical Engineer	196. Broadcaster
6. Data Scientist	195. Photojournalist
7. Dental Hygienist	194. Corrections Officer
8. Software Engineer	193. Taxi Driver
9. Occupational Therapist	192. Firefighter
10. Computer Systems Analyst	191. Mail Carrier

http://www.careercast.com/jobs-rated/jobs-rated-report-2015-ranking-top-200-jobs

Donald Knuth Professor emeritus of Computer Science at Stanford University Turing Award winner "father of the analysis of algorithms."

"I can't be as confident about computer science as I can about biology. Biology easily has 500 years of exciting problems to work on. It's at that level."

Course Topic #1: Sequence Alignment

Question: How do we compare two genes/genomes?

Course Topic #2: Genome Assembly

Question: How do we put all the pieces back together?

Course Topic #3: Phylogenetics

Phylogenetic Tree of Life

Question: Can we recover how a tumor has evolved overtime?

Poly-clonal tumor at sampling

Question: Can we reconstruct the evolutionary history of different species?

https://scientificbsides.wordpress.com/2014/06/09/inferring-tumour-evolution-2-comparison-to-classical-phylogenetics/

Course Topic #4: Pattern Matching

Question: How do we start to make sense of all these sequences?

(a)	\$aca		(0	;) <mark>s</mark> acaacq	aac \$acaacg	aa \$acaac
	a a c g a c a a			aacg\$ac	aacg\$ac	aacg\$a
acaacg	\$ → a c g \$	aca→	gc\$aaac	acaacg\$ acg\$aca	acaacg\$ acg\$aca	acaacg acg\$ac
	caac cg\$a			caacg\$a	caacg\$a	caacg\$
	g\$ac			→ <mark>c g \$ a c a a</mark> g \$ a c a a c	с g \$ а с а а g \$ а с а а с	c g \$ a c a g \$ a c a a
						20220
(b)	g	сg	acg	aacg	caacg	acaac
(b) \$acaac	•	cg aacg	ас <u>д</u> \$асаасд	aacg \$acaacg	sacaacg	100
\$acaac aacg\$a	g \$ac c aac	aacg g\$zc	\$ a c a a c g a a c g \$ a c	\$ a c a a c g a a c g \$ a c	\$ a c a a c g a a c g \$ ≈ c	\$acaac aacg\$a
\$acaac aacg\$a acaacg	g \$ac c aac \$ aca	a a c g g \$ 7 c a g \$	\$ a c a a c g a a c g \$ a c a c a a c g \$	\$ a c a a c g a a c g \$ a c a c a a c g \$	\$ a c a a c g a a c g \$ a c a c a s c g \$	\$ a c a a c g a a c g \$ a a c a a c g
\$acaac aacg\$a acaacg acg\$ac	g \$ac c aac \$ aca a acg	a a c g g \$ / c a / g \$ 9 a c a	\$ a c a a c g a a c g \$ a c a c a a c g \$ a c a a c g \$ a c g \$ a c a	\$ a c a a c g a a c g \$ a c a c a a c g \$ a c g \$ a c a	\$ a c a a c g a c g \$ a c a c a s c g \$ a c g \$ a c a	\$ a c a a c g a a c g \$ a a c a a c g
\$acaac aacg\$a acaacg acg\$ac Caacg\$	g \$ac c aac \$ aca a acg a cag	a a c g g \$ 7 c a g \$ 9 a c a c g \$ a	\$ a c a a c g a a c g \$ a c a c a a c g \$ a c g \$ a c a c a a c g \$ a	\$ a c a a c g a a c g \$ a c a c a a c g \$ a c g \$ a c a c a a c g \$ a c a a c g \$	\$ a c a a c g a c g \$ a c a c a s c g \$ a c g \$ a c a c a a c g \$ a	a c a a c \$ a c a a c a a c g \$ a a c a a c g a c a a c g a c a a c g a c a c g \$ a c a a c g \$ a c a c g \$ a c a a c g \$ a c
\$acaac aacg\$a acaacg acg\$ac	g \$ac c aac \$ aca a acg a cag	a a c g g \$ / c a / g \$ 9 a c a	\$ a c a a c g a a c g \$ a c a c a a c g \$ a c a a c g \$ a c g \$ a c a	\$ a c a a c g a a c g \$ a c a c a a c g \$ a c g \$ a c a	\$ a c a a c g a c g \$ a c a c a s c g \$ a c g \$ a c a	\$ a c a a c a a c g \$ a a c a a c g a c g \$ a c

http://www.genomebiology.com/2009/10/3/R25/figure/F1?highres=y

Course Topic #4: Pattern Matching

Question: How do we start to make sense of all these sequences?

(a) acaacg	\$acaacg aacg\$ac acaacg\$ \$→ acg\$aca→ caacg\$a cg\$acaa g\$acaac	(C) gc\$aaac 	aacg\$ac acaacg\$		a a \$ a c a a c a a c g \$ a a c a a c g a c g \$ a c a c g \$ a c c g \$ a c c g \$ a c a g \$ a c a a c g \$ a c c a a c g \$ c g \$ a c a c a a c g \$ a c a a c g c a a c g \$ a c a a c g c a a c a a c g c g a a c a a c a a c g c g a a c a a c a a c a a c g c g a a c a a a c a a a c a a a c a a a c a a a c a a a c a a a c a a a c a a a a c a a a a a a a a a a a a c a
(b) \$acaac aacg\$a acaacg	c aacg\$rc	a c g \$ a c a a c g a a c g \$ a c a c a a c g \$	a a c g \$ a c a a c g a a c g \$ a c a c a a c g \$	caacg \$acaacg a acg\$a c acascg\$	a c a a c \$ a c a a c a a c g \$ a a c a a c g
acg\$ac caacg\$ cg\$aca q\$acaa	a caacg\$a a cg\$acaa	a c g \$ a c a c a a c g \$ a c g \$ a c a a g \$ a c a a c	a c g \$ a b a C a a b g \$ a C g \$ a c a a g \$ a c a a c	a c g \$ a c a c a a c g \$ a c g \$ a c a a g \$ a c a a c	acg\$ac Caacg\$ Cg\$aca q\$acaa

http://www.genomebiology.com/2009/10/3/R25/figure/F1?highres=y

Course Topic #5: Cancer Genomics

Question: How can we analyze available data to determine what drives tumor growth and how to treat or prevent it?

Course Topics

- 1. Sequence alignment 'How do we compare two genes/genomes?'
- 2. Genome assembly 'How do we put all the pieces back together?'
- 3. Phylogenetics 'What is the evolutionary history of different sequences?'
- 4. Pattern matching 'How do we start to make sense out of all these sequences?'
- 5. Cancer genomics 'How do we identify what drives tumor growth and how to treat/prevent it?'

Course Topics

- 1. Sequence alignment Dynamic programming: edit distance
- 2. Genome assembly Graphs: de Bruijn graph, Eulerian and Hamiltonian paths
- Phylogenetics Trees and distances: distance matrices, neighbor joining, hierarchical clustering. Phylogenies: Sankoff/Fitch algorithms, perfect phylogeny and compatibility
- 4. Pattern matching Suffix trees/arrays. Burrows-Wheeler transform, Hidden Markov Models (HMMs)
- 5. Cancer genomics Cancer phylogenies: Integer linear optimization and graph algorithms

Problem != Algorithm

Problem Π with instance *X* and solution set $\Pi(X)$:

- Decision problem:
 - Is $\Pi(X) = \emptyset$?
- Optimization problem:
 - Find $y^* \in \Pi(X)$ s.t. $f(y^*)$ is optimum.
- Counting problem:
 - Compute $|\Pi(X)|$.
- Sampling problem:
 - Sample uniformly from $\Pi(X)$.
- Enumeration problem:
 - Enumerate all solutions in $\Pi(X)$

Algorithms:

Set of instructions for solving problem.

- Exact
- Heuristic

The Change Problem

• Suppose we have three coins:

• What is the minimum number of coins needed to make change for **M** cents?

The Change Problem

• Suppose we have three coins:

• What is the minimum number of coins needed to make change for **M** cents?

Change Problem: Given coins $\mathbf{c} = (c_1, \dots, c_n)$ and amount M, find $\mathbf{d} = (d_1, \dots, d_n) \in \mathbb{N}^n$ such that: (i) $M = \sum_{i=1}^n c_i d_i$ and (ii) $\sum_{i=1}^n d_i$ is minimum. Idea #1: Choose largest coin possible

GreedyChange(M, c_1, \dots, c_n)

- **1.** while M > 0
- **2.** $x \leftarrow \text{largest coin } c_i \text{ possible such that } c_i \leq M$
- **3.** $M \leftarrow M x$

Idea #1: Choose largest coin possible

GreedyChange(M, c_1, \dots, c_n)

- **1.** while M > 0
- **2.** $x \leftarrow \text{largest coin } c_i \text{ possible such that } c_i \leq M$
- $3. \qquad M \leftarrow M x$

Is this a good algorithm?

Idea #1: Choose largest coin possible

GreedyChange(M, c_1, \dots, c_n)

- **1.** while M > 0
- **2.** $x \leftarrow \text{largest coin } c_i \text{ possible such that } c_i \leq M$
- **3.** $M \leftarrow M x$

Is this a good algorithm? Two properties of a good algorithm:

Correctness: gives the correct output for any input.

- Seem to work for c = (5, 3, 1).
- But what about c = (5, 4, 1) and M = 8?

Efficient: *running time* of the algorithm does not increase to rapidly with input size.

Idea #2: Don't be smart, apply brute force

Change Problem: Given coins $\mathbf{c} = (c_1, \dots, c_n)$ and amount M, find $\mathbf{d} = (d_1, \dots, d_n) \in \mathbb{N}^n$ such that: (i) $M = \sum_{i=1}^n c_i d_i$ and (ii) $\sum_{i=1}^n d_i$ is minimum.

- Check all possible solutions:
 - 11 = 5 + 5 + 1
 - 11 = 5 + 4 + 1 + 1
 - 11 = 5 + 1 + 1 + 1 + 1 + 1 + 1
 - 11 = 4 + 4 + 1 + 1 + 1

Optimal substructure:

Optimal solution is obtained from optimal solutions of subproblems

- This example can be expressed using a recurrence relation
- Let minNumCoins(*M*) be the minimum number of coins to make change for *M* cents

$$\min\operatorname{NumCoins}(M) = \min \begin{cases} \min\operatorname{NumCoins}(M-1) + 1, \\ \min\operatorname{NumCoins}(M-3) + 1, \\ \min\operatorname{NumCoins}(M-5) + 1. \end{cases}$$

Change Problem: Given coins $\mathbf{c} = (c_1, \dots, c_n)$ and amount M, find $\mathbf{d} = (d_1, \dots, d_n) \in \mathbb{N}^n$ such that: (i) $M = \sum_{i=1}^n c_i d_i$ and (ii) $\sum_{i=1}^n d_i$ is minimum.

minNumCoins
$$(M)$$
 = min
$$\begin{cases} \min NumCoins(M - c_1) + 1, \\ \min NumCoins(M - c_2) + 1, \\ \dots \\ \min NumCoins(M - c_n) + 1. \end{cases}$$

Given coins $\mathbf{c} = (1, 3, 7)$ and amount M = 77, find $\mathbf{d} = (d_1, \dots, d_n) \in \mathbb{N}^n$ such that: (i) $M = \sum_{i=1}^n c_i d_i$ and (ii) $\sum_{i=1}^n d_i$ is minimum.

$\min NumCoins(77) = \min \langle$	$ \begin{cases} \min \text{NumCoins}(77-1)+1, \\ \min \text{NumCoins}(77-3)+1, \\ \min \text{NumCoins}(77-7)+1, \end{cases} $
	$\begin{cases} \min \text{NumCoins}(76-1) + 1, \\ \min \text{NumCoins}(76-3) + 1, \\ \min \text{NumCoins}(76-7) + 1, \end{cases}$

minNumCoins(7) = 1minNumCoins(3) = 1minNumCoins(1) = 1

- RecursiveChange($M, c_1, ..., c_n$)
- **1.** if M = 0
- **2.** return 0
- 3. bestNumCoins $\leftarrow \infty$
- **4.** for $i \leftarrow 1$ to n
- 5. if $M \ge c_i$
- 6. numCoins \leftarrow RecursiveChange $(M - c_i, c_1, ..., c_n)$
- 7. if numCoins + 1 < bestNumCoins
- 8. bestNumCoins ← numCoins + 1
- 9. return bestNumCoins

Correct but inefficient:

Same subproblem is solved many times!

- RecursiveChange($M, c_1, ..., c_n$)
- **1.** if M = 0
- **2.** return 0
- 3. bestNumCoins $\leftarrow \infty$
- **4.** for $i \leftarrow 1$ to n
- 5. if $M \ge c_i$
- 6. numCoins \leftarrow RecursiveChange $(M - c_i, c_1, ..., c_n)$
- 7. if numCoins + 1 < bestNumCoins
- 8. bestNumCoins ← numCoins + 1
- 9. return bestNumCoins

Correct but inefficient:

Same subproblem is solved many times!

Solutions:

- Remember previously computed values: memoization
 - Bottom up computation: dynamic programming

Fill in table "bottom up": from smallest to largest.

$$\min\operatorname{NumCoins}(M) = \min \begin{cases} \min\operatorname{NumCoins}(M-1) + 1, \\ \min\operatorname{NumCoins}(M-3) + 1, \\ \min\operatorname{NumCoins}(M-5) + 1. \end{cases}$$

Only one coin is needed to make change for the values 1, 3 and 5

Fill in table "bottom up": from smallest to largest.

Two coins are needed to make change for the values 2, 4 and 6

Fill in table "bottom up": from smallest to largest.

Three coins are needed to make change for the value 7

Fill in table "bottom up": from smallest to largest.

Optimal substructure: Optimal solution obtained from optimal subsolutions

Fill in table "bottom up": from smallest to largest.

Optimal substructure: Optimal solution obtained from optimal subsolutions

Change Problem: Given coins $\mathbf{c} = (c_1, \dots, c_n)$ and amount M, find $\mathbf{d} = (d_1, \dots, d_n) \in \mathbb{N}^n$ such that: (i) $M = \sum_{i=1}^n c_i d_i$ and (ii) $\sum_{i=1}^n d_i$ is minimum.

DPChange(M, c_1, \dots, c_n)

- **1.** for $m \leftarrow 1$ to M
- **2.** minNumCoins[c_i] $\leftarrow \infty$
- **3.** for $i \leftarrow 1$ to n
- **4.** minNumCoins[c_i] $\leftarrow 1$
- **5.** for $m \leftarrow 1$ to M
- 6. minNumCoins[m] $\leftarrow 1 + \min_{i=1}^{n} \{\min NumCoins[m c_i]\}$
- 7. return minNumCoins[M]

Correct? yes

Efficient? yes

Different algorithm techniques

Change Problem: Given coins $\mathbf{c} = (c_1, \dots, c_n)$ and amount M, find $\mathbf{d} = (d_1, \dots, d_n) \in \mathbb{N}^n$ such that: (i) $M = \sum_{i=1}^n c_i d_i$ and (ii) $\sum_{i=1}^n d_i$ is minimum.

Technique	Correct?	Efficient?
Greedy algorithm [GreedyChange]	no	yes
Exhaustive enumeration [ExhaustiveChange]	yes	no
Recursive algorithm [RecursiveChange]	yes	no
Dynamic programming [DPChange]	yes	yes

Summary

- DNA, RNA and proteins are sequences
 - Central dogma of molecular biology: DNA -> RNA -> protein
- Problem != algorithm
- Different algorithm techniques
 - Greedy
 - Exhaustive search/brute force
 - Recursive algorithm
 - Dynamic programming algorithm
- Reading:
 - "Biology for Computer Scientists" by Lawrence Hunter (http://www.el-kebir.net/teaching/CS466/Hunter_BIO_CS.pdf)
 - Jones and Pevzner: Chapters 2.1, 2.3, 2.4, 6.2

Sources

- CS 362 by Layla Oesper (Carleton College)
- CS 1810 by Ben Raphael (Brown/Princeton University)
- An Introduction to Bioinformatics Algorithms book (Jones and Pevzner)