

Advanced Integer Linear Programming for Cancer Phylogenetics

Mohammed El-Kebir UIUC

April 2, 2024

Combinatorial Optimization in Computational Biology

Many processes in biology are discrete and combinatorial in nature!

Combinatorial biological process

- Evolution: mutations accumulating in biological populations
- Different combinations of genetic elements result in varied gene expression
- Proteins may interact and form protein complexes
- •

Computational tasks

- Reconstructing evolutionary trees from measurements at present time
- Inferring a gene-expression network from RNA-seq data
- Comparing protein-protein interaction networks
- Assembling a genome from reads
- ..

Goal: Inferring combinatorial objects from data subject to biological constraint --- finding the right problem is non-trivial!

Combinatorial Optimization in Computational Biology

Different Types of Problems

Problem Π with instance/input X and feasible solution set $\Pi(X)$:

- Decision problem:
 - Is $\Pi(X) = \emptyset$?
- Optimization problem:
 - Find $y^* \in \Pi(X)$ s.t. $f(y^*)$ is optimum.
- Counting problem:
 - Compute $|\Pi(X)|$.
- Sampling problem:
 - Sample uniformly from $\Pi(X)$.
- Enumeration problem:
 - Exhaustively enumerate solutions $\Pi(X)$.

Algorithm:

Set of instructions for solving problem.

- Exact
- Heuristic

Running time: How does the number of steps scale as a function of |X|?

Many problems do not admit efficient algorithms

Hard Optimization Problems

Many problems do not admit efficient algorithms

Informally:

NP-hard problems are optimization problems that are really hard, and unlikely solvable in polynomial time.

But often we can still exactly solve practical problem instances!

Outline – Advanced Integer Linear Programming Techniques

- Enumerating the solution space
- Piecewise linear approximation
- Cutting planes
- Column generation

Problem 1: Deconvolving Bulk DNA-seq Data

Biological question: How to infer an evolutionary tree *T* from frequencies *F*

Problem 1: Perfect Phylogeny Mixture Deconvolution (PPMD)

Variant of PPMD:

TrAp [Strino *et al.,* 2013], PhyloSub [Jiao *et al.,* 2014], CITUP [Malikic *et al.,* 2015], BitPhylogeny [Yuan *et al.,* 2015] LICHeE [Popic *et al.,* 2015], AncesTree [El-Kebir, Oesper *et al.,* 2015], ...

PPMD: [El-Kebir*, Oesper* et al., 2015]

Given F, find U and B such that (i) F = UB, (ii) B is a perfect phylogeny and (iii) U has nonnegative entries

Perfect Phylogeny T **n** mutations

Perfect Phylogeny Matrix B

Combinatorial Characterization of PPMD

Given F, find U and B such that (i) F = UB, (ii) B is a PP tree and (iii) $U \ge 0$

Ancestry Graph G = (V, A)

M. El-Kebir, L. Oesper, H. Acheson-Field and B. J. Raphael. Reconstruction of clonal trees and tumor composition from multi-sample sequencing data. <u>Bioinformatics</u> (Special Issue: Proceedings of ISMB), 31(12):i62-i70, 2015.

Lemma (Ancestry Condition):

Given ${\it F}$ and ${\it T}$, for all samples ${\it p}$ and mutations ${\it k}$ child of ${\it j}$, $f_{pj} \geq f_{pk}$

- Vertex for every mutation
- Edge $(j,k) \in A$ if $f_{pj} \geq f_{pk}$ for all samples p

Theorem 1:

T is a solution to the PPM if and only if *T* is a spanning tree of *G* satisfying the Sum Condition

Theorem 2:

PPM is NP-complete even if m = 2

ILP for PPMD

 $\begin{pmatrix} 0.8 & 0.6 & 0.5 & 0.0 & 0.1 & 0.0 \\ 0.7 & 0.6 & 0.0 & 0.6 & 0.0 & 0.0 \\ 0.8 & 0.0 & 0.0 & 0.0 & 0.6 & 0.4 \end{pmatrix}$

 \max

$$\sum_{(i,j)\in E(G)} x_{i,j}$$

 $\sum x_{i,j}$ Maximize the number of edges in the tree

Ancestry Graph G

s. t.
$$\sum_{i=1}^{n} r_i = 1$$
 Only a single mutation is the root

$$egin{aligned} r_j + \sum_{(i,j) \in E(G)} x_{i,j} &= 1 \ \sum_{(i,j) \in E(G)} f_{p,j} \cdot x_{i,j} &\leq f_{p,i} \end{aligned}$$

$$orall j \in [n]$$

 $orall j \in [n]$ Every mutation has a parental mutation or is the root

$$\sum_{(i,j)\in F(G)} f_{p,j}\cdot x_{i,j} \leq f_{p,i}$$

$$orall p \in [m], i \in [n]$$
 Sum condition

$$r_i \in \{0,1\} \ x_{i,j} \in \{0,1\}$$

$$orall i \in [n] \ orall i (i,j) \in E(G)$$
 Integrality

O(|E(G)|) binary variables, O(mn + |E(G)|) constraints

Maximum Likelihood for PPMD

n mutations

Variant Read Counts A

Total Read Counts **D**

Frequency Matrix F

Given A, D, find F, U and B such that (i) F = UB, (ii) B is a PP tree, (iii) $U \ge 0$ and (iv) Pr(A | D, F) is maximum

$$\Pr(A \mid D, F) = \prod_{p=1}^m \prod_{i=1}^n \mathrm{binom}(a_{p,i} \mid d_{p,i}, f_{p,i}) = \prod_{p=1}^m \prod_{i=1}^n inom{d_{p,i}}{a_{p,i}} (f_{p,i})^{a_{p,i}} (1-f_{p,i})^{d_{p,i}-a_{p,i}}.$$

Outline – Advanced Integer Linear Programming Techniques

- Enumerating the solution space
- Piecewise linear approximation
- Cutting planes
- Column generation

Infinite Sites Assumption is too Restrictive for SNVs

SNVs can be **lost** due to CNAs

Infinite sites assumption:

- No parallel evolution of SNVs
- No loss of SNVs
- SCITE [Jahn et al. 2016]
- OncoNEM [Ross and Markowetz, 2016]

k-Dollo Phylogeny (**k**-DP) Problem

Definition 1. A k-Dollo phylogeny T is a rooted, node-labeled tree subject to the following conditions.

- Each node v of T is labeled by a vector $\mathbf{b}_v \in \{0,1\}^n$.
- The root r of T is labeled by vector $\mathbf{b}_r = [0, \dots, 0]^T$.
- For each character $c \in [n]$, there is exactly one gain edge (v, w) in T such that $b_{v,c} = 0$ and $b_{w,c} = 1$.
- 4. For each character $c \in [n]$, there are at most k loss edges (v, w) in T such that $b_{v,c} = 1$ and $b_{w,c} = 0$.

k-Dollo Phylogeny problem (k-DP). Given a binary matrix $B \in$ $\{0,1\}^{m\times n}$ and parameter $k\in\mathbb{N}$, determine whether there exists a k-Dollo phylogeny for B, and if so construct one.

00000 01110 01110 11000 10111 1011

Combinatorial Characterization of *k*-DP

Theorem 3. Let $B \in \{0,1\}^{m \times n}$. The following statements are equivalent.

- There exists a k-Dollo phylogeny T for B.
- There exists a k-Dollo completion A of B.
- There exists a k-completion A of B, and perfect phylogeny T for A whose characters are consistent with S[k].

Input Matrix **B**

k-Dollo Completion **A**

k-Dollo Phylogeny **T** 11

Forbidden Submatrices in Solutions A to k-DP

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix} \quad \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 2 \end{pmatrix} \quad \begin{pmatrix} 1 & 0 \\ 0 & 2 \\ 1 & 1 \end{pmatrix} \quad \begin{pmatrix} 1 & 0 \\ 0 & 2 \\ 1 & 2 \end{pmatrix} \quad \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 2 & 1 \end{pmatrix} \quad \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 2 & 2 \end{pmatrix} \quad \begin{pmatrix} 1 & 0 \\ 0 & 2 \\ 2 & 1 \end{pmatrix} \quad \begin{pmatrix} 1 & 0 \\ 0 & 2 \\ 2 & 1 \end{pmatrix} \quad \begin{pmatrix} 1 & 0 \\ 0 & 2 \\ 2 & 2 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix} \quad \begin{pmatrix} 2 & 0 \\ 0 & 1 \\ 1 & 2 \end{pmatrix} \quad \begin{pmatrix} 2 & 0 \\ 0 & 1 \\ 1 & 2 \end{pmatrix} \quad \begin{pmatrix} 2 & 0 \\ 0 & 2 \\ 1 & 1 \end{pmatrix} \quad \begin{pmatrix} 2 & 0 \\ 0 & 2 \\ 1 & 2 \end{pmatrix} \quad \begin{pmatrix} 2 & 0 \\ 0 & 1 \\ 2 & 1 \end{pmatrix} \quad \begin{pmatrix} 2 & 0 \\ 0 & 1 \\ 2 & 2 \end{pmatrix} \quad \begin{pmatrix} 2 & 0 \\ 0 & 2 \\ 2 & 1 \end{pmatrix} \quad \begin{pmatrix} 2 & 0 \\ 0 & 2 \\ 2 & 2 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 \\ 0 & 2 \\ 1 & 2 \end{pmatrix} \quad \begin{pmatrix} 1 & 1 \\ 0 & 2 \\ 2 & 2 \end{pmatrix} \quad \begin{pmatrix} 2 & 1 \\ 0 & 2 \\ 2 & 2 \end{pmatrix} \quad \begin{pmatrix} 2 & 0 \\ 1 & 1 \\ 2 & 1 \end{pmatrix} \quad \begin{pmatrix} 2 & 0 \\ 1 & 1 \\ 2 & 2 \end{pmatrix} \quad \begin{pmatrix} 2 & 0 \\ 1 & 2 \\ 2 & 2 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 1 \\ 1 & 2 \\ 2 & 2 \end{pmatrix} \quad \begin{pmatrix} 2 & 1 \\ 1 & 2 \\ 2 & 2 \end{pmatrix} \quad \begin{pmatrix} 2 & 1 \\ 1 & 2 \\ 2 & 2 \end{pmatrix} \quad \begin{pmatrix} 2 & 1 \\ 1 & 2 \\ 2 & 2 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 1 \\ 1 & 2 \\ 2 & 2 \end{pmatrix} \quad \begin{pmatrix} 2 & 1 \\ 1 & 2 \\ 2 & 2 \end{pmatrix} \quad \begin{pmatrix} 2 & 1 \\ 1 & 2 \\ 2 & 2 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 1 \\ 1 & 2 \\ 2 & 2 \end{pmatrix} \quad \begin{pmatrix} 2 & 1 \\ 1 & 2 \\ 2 & 2 \end{pmatrix}$$

Naïve ILP

min
$$\sum_{p=1}^{m} \sum_{c=1}^{n} a_{p,c,2}$$
 Minimize the number of losses

s.t.
$$a_{p,c,1} = b_{p,c}$$
 1-state in input <-> 1-state in output $\forall p \in [m], c \in [n]$ $a_{p,c,1} + a_{p,d,0} + a_{q,c,0} + a_{q,d,1} + a_{r,c,1} + a_{r,d,1} \le 5$ $\forall p,q,r \in [m], c,d \in [n]$

1st forbidden submatrix [[1,0], [0,1], [1,1]]

•

25th forbidden submatrix [[2,1], [1,2], [2,2]]

$$a_{p,c,2} + a_{p,d,1} + a_{q,c,1} + a_{q,d,2} + a_{r,c,2} + a_{r,d,2} \le 5$$
 $\forall p, q, r \in [m], c, d \in [n]$
 $a_{p,c,i} \in \{0,1\}$ $\forall p \in [m], c \in [n], i \in \{0,\ldots,2\}$

O(mn) binary variables, $O(m^3n^2)$ constraints

Callbacks

Figure 5.5: **CPLEX flow diagram.**

Results for k-DP

- Naive ILP does not scale and has O(mnk) variables and $O(m^3n^2k^4)$ constraints
- Column and cutting plane generation
 - Introduce variables and constraints only when needed
- Simulations with 60 instances for each each m, n and k

Advanced Integer Linear Programming Techniques

- Enumerating the solution space
- Piecewise linear approximation
- Cutting planes
- Column generation