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Combinatorial Optimization in Computational Biology

Many processes in biology are discrete and combinatorial in nature!

Combinatorial biological process Computational tasks

 Evolution: mutations accumulating in « Reconstructing evolutionary trees from
biological populations measurements at present time

 Different combinations of genetic  Inferring a gene-expression network from
elements result in varied gene expression RNA-seq data

« Proteins may interact and form protein « Comparing protein-protein interaction
complexes networks

. .. « Assembling a genome from reads

Goal: Inferring combinatorial objects from data subject to biological
constraint --- finding the right problem is non-trivial!




Combinatorial Optimization in Computational Biology

Formulating a
combinatorial
problem

Interpreting ? Analyzing
solgtlops and Biological comp.lex1ty ‘&
validating the westion combinatorial

algorithm q structure

Designing an
algorithm

Problem # Algorithm




Different Types of Problems

Problem II with instance/input X and feasible Algorithm:
solution set I1(X):

e Decision problem:
e IsTI(X) = @7

Optimization problem:
* Find y* € [I(X) s.t. f(y™) is optimum.

Set of instructions for solving problem.
* Exact

* Heuristic

Running time: How does the number of
steps scale as a function of | X|?

Counting problem:
e Compute |[II(X)].

Sampling problem:
« Sample uniformly from I1(X).

Enumeration problem:
» Exhaustively enumerate solutions I1(X).

[x)

Many problems do not admit efficient algorithms




Hard Optimization Problems

Many problems do not admit efficient algorithms

Formulating a
combinatorial
problem

?

Biological
question

Interpreting
solutions and
validating the

algorithm

\ Designing an

algorithm

Informally:
NP-hard problems are
comploity & optimization problems that
combinatorial .
structure are really hard, and unlikely
solvable in polynomial time.

But often we can stil

exactly solve practical problem instances!




Outline - Advanced Integer Linear Programming Techniques

« Enumerating the solution space
* Piecewise linear approximation
e Cutting planes

» Column generation



Problem 1: Deconvolving Bulk DNA-seq Data

SZ n mutations Phylogeny T
51,/-@\ B0 J: ; @ © @ @ @ ©
©%. 0O / £ 5/08 08 08 0.0 00 0.0
\ HE /'
80/ '@ mp £ s (07 06 00 06 00 00| Hp
SeooZemTTEIS . h O S
,@@é)\, e s:\0.8] 0.0 0.0 0.0 0.6 0.4 AN 3
\ e . { I ( 1
S3‘~~@. __________________________  Frequency Matrix F AN : i i
—————————————————— 10.8 | 10.6 10.1!0.2 0.4
,,,,, . \___IS S | Qe St At
/VariantaIIeIefrequency(VAF):0.8\"/ 12 0.2
| GGAG;GAGT |
‘,@é@g} e Input: Mixtures of unknown leaves L(T)
s, e CSCRETEEE of an unknown tree T in unknown proportions U
| LC |
N . 9%

Biological question: How to infer an evolutionary tree T from frequencies F
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Problem 1: Perfect Phylogeny Mixture Deconvolution (PPMD)

Variant of PPMD: Perfect

TrAp [Strino et al., 2013], PhyloSub [Jiao et al., 2014], Phylogeny T ©
CITUP [Malikic et al., 2015], BitPhylogeny [Yuan et al., 2015]

LICHeE [Popic et al., 2015], AncesTree [El-Kebir, Oesper et al., 2015], ...

PPMD: [El-Kebir*, Oesper* et al., 2015]
Given F, find U and B such that (i) F= U B, (ii) B is a
perfect phylogeny and (iii) U has nonnegative entries
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Combinatorial Characterization of PPMD

Given F, find U and B such that (i) F= U B, (ii) B is a PP tree and (iii) U = 0

Lemma (Sum Condition):

Given F and T, for all samples p and mutations j,

fpj Z Z fpk
k child of j
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Ancestry Graph G = (V, A)

M. EL-Kebir} L. Oesper’ H. Acheson-Field and B.J. Raphael. Reconstruction of clonal
trees and tumor composition from multi-sample sequencing data. Bioinformatics

(Special Issue: Proceedings of ISMB), 31(12):i62-i70,2015.

Lemma (Ancestry Condition):

Given F and T, for all samples p and
mutations k child of j, fp; > fp

JE&/“
ne

Ancestry graph G = (V, A); given F
* Vertex for every mutation
* Edge (j,k) € A if fp; = fpr for all samples p

Theorem 1:

T is a solution to the PPM if and only if Tis a
spanning tree of G satisfying the Sum Condition

Theorem 2:
PPM is NP-complete even if m =2



https://doi.org/10.1093/bioinformatics/btv261
https://doi.org/10.1093/bioinformatics/btv261
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ILP for PPMD 57 58 65 5 5 )
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F
max Z Tij  Maximize the number of edges in the tree
(4,4)€E(G)
n
s. t. Z r; =1 Only a single mutation is the root Ancestry Graph G
=1
: Every mutation has a parental
r; ;= 1 vV n
it (i ’)GZE(G) a J € [n] mutation or is the root
1,
Z fp,j ' Ty < fp,z' Vp - [m],z - [n] Sum condition
(4,5) €E(G)
r; € {0,1 Vi € |n
’ { ’ } . [ ] Integrality
z;; € {0,1} V(%,7) € E(G)

O(|E(G)|) binary variables, O(mn + |E(G)|) constraints




Maximum Likelihood for PPMD
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Given A, D, find F, U and B such that
(i) F= U B, (ii) Bis a PP tree, (iii) U = 0
and (iv) Pr(A|D, F) is maximum

p=1 1=1 ’ 10
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e Cutting planes

» Column generation



Infinite Sites Assumption is too Restrictive for SNVs
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Single Nucleotide

_Variant (SNV)

Small Insertion /
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Copy-Number
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Structural
Variant (SV)

Whole-Genome
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SNVs can be lost due to CNAs
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Infinite sites assumption:

* No parallel evolution of SNVs
* No loss of SNVs

* SCITE [ahn et al. 2016]

* OncoNEM [Ross and Markowetz, 2016]




k-Dollo Phylogeny (k-DP) Problem

Definition 1. A k-Dollo phylogeny " is arooted, node-labeled tree subject 202(00
to the following conditions. (| +®
-- 11000

1. Each node v of T' is labeled by a vector b,, € {0, 1}"™. e - <

2. The root r of T is labeled by vector b,. = [0, ...,0]7. / + 8 * N

3. For each character ¢ € [n], there is exactly one gain edge (v, w) in 01110 10111
T such that by = 0 and by = 1.

4. For each character ¢ € [n], there are at most k loss edges (v, w) in |
T such that by = 1 and by, = 0. @

00000 01110 01110 11000 10111 1011

n SNVs
©c @ O e o
k-Dollo Phylogeny problem (k£-DP). Given a binary matrix B € / 00 00 0\ @,
{0,1}™*™ and parameter £k € N, determine whether there exists a 1 8 i } 8 g 3
k-Dollo phylogeny for B, and if so construct one. B=11 10 0 0 ©
0100 1]6®°
\0 1 0 0 1) &



Combinatorial Characterization of k-DP

Theorem 3. Let B € {0,1}™*™. The following statements are O
equivalent.

1. There exists a k-Dollo phylogeny 1" for B.
2. There exists a k-Dollo completion A of B.

3. There exists a k-completion A of B, and perfect phylogeny 71" for A O
whose characters are consistent with S|k]|. k-Dollo State Tree S[k]
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Forbidden Submatrices in Solutions A to k-DP
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Naive ILP

min

S.t.

m n
E E Gp,c,2 Minimize the number of losses
p=1 c=1

Up.c.1 = by ¢ 1-state in input <-> 1-state in output Vp € [m],c € |n]
a’p,C,l —I_ a'padao _I_ a’q,C,O —I_ a’qadal _I_ CLT,C,]. —I_ a“’nada]- S 5 \V/p7 Q7 r E [m]7 C7 d E [n]
15t forbidden submatrix [ [1,0], [0,1], [1,1] ]

25 forbidden submatrix [ [2,1], [1,2], [2,2] ]
a’p,C,Q —I_ a/pad71 _I_ a’q,C,l —|_ aq7d72 _I_ aﬂrac72 —l_ alrad72 S 5 \v/p7 q’ r 6 [m]7 C7 d E [n]

apci € {0,1} Vp € [m],c € [n],i € {0,...,2}

O (mn) binary variables, O (m>n?) constraints




Callbacks

1. Pick a node
from B&B tree

|

» 2. Solve LP relax-

ation

yes

3. Add user cuts

Cuts added?

yes

no

Cuts added? 4. Add lazy cuts

no

no

» 5. Primal heuristic

et

|

6. Branch /prune

Figure 5.5: CPLEX flow diagram.
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Results for k-DP

* Naive ILP does not scale and has O(mnk) variables and O(m?3n?k*) constraints

* Column and cutting plane generation
* Introduce variables and constraints only when needed

e Simulations with 60 instances for each each m, n and k
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Advanced Integer Linear Programming Techniques

« Enumerating the solution space
* Piecewise linear approximation
e Cutting planes

» Column generation



