

Phyolin: Identifying a Linear Perfect Phylogeny in Single-cell DNA Sequencing Data of Tumors

Leah Weber and Mohammed El-Kebir

University of Illinois at Urbana-Champaign, Department of Computer Science

WABI 2020 September 7-9, 2020

Cancer is an evolutionary process

Cancer is an evolutionary process

Cancer is an evolutionary process

Modes of Cancer Evolution [Davis et al. 2017] [Watkins & Schwarz 2018]

How do tumor cells respond to selective pressures and evolve over time?

Modes of Cancer Evolution [Davis et al. 2017] [Watkins & Schwarz 2018]

How do tumor cells respond to selective pressures and evolve over time?

Modes of Cancer Evolution [Davis et al. 2017] [Watkins & Schwarz 2018]

How do tumor cells respond to selective pressures and evolve over time?

Given single-cell data, can we discern between linear and branched evolution?

Outline

- Problem statement
- Complexity
- Methods
- Simulation study
- Application to real data
- Conclusions and future work

Given single-cell data, can we reconstruct the tumor's evolution?

0	False Negative
1	False Positive
?	Missing Data
1	Doublet

Given single-cell data, can we reconstruct the tumor's evolution?

Given single-cell data, can we discern between linear and branched evolution? [Azer et al. 2020]

Given single-cell data, can we discern between linear and branched evolution? [Azer et al. 2020]

 $H_0: B$ represents linear evolution $H_1: B$ represents branched evolution

Key idea: Assessing the plausibility of linear evolution from single-cell DNA data

Linear Perfect Phylogeny Flipping Problem (LPPFP) Given a matrix $B \in \{0, 1\}^{n \times m}$, Key idea: Assessing the plausibility of linear evolution from single-cell DNA data

Linear Perfect Phylogeny Flipping Problem (LPFP) Given a matrix $B \in \{0, 1\}^{n \times m}$, find the minimum number of bit flips from 0 to 1 such that *B* represents a linear perfect phylogeny.

Characterization of linear perfect phylogeny

Characterization of linear perfect phylogeny

The **one-state** of a mutation is the subset of cells with character state equal to 1.

 $O_{\bullet} = \{c_2, c_3, c_4, c_5\}$

Characterization of linear perfect phylogeny

The **one-state** of a mutation is the subset of cells with character state equal to 1.

 $O_{\bullet} = \{c_2, c_3, c_4, c_5\}$

We say B represents a linear perfect phylogeny if there exists a total order on the mutation one-states with respect to the subset relation.

 $O_{\bullet} \subseteq O_{\bullet} \subseteq O_{\bullet} \subseteq O_{\bullet} \subseteq O_{\bullet}$

LPPFP is NP-hard by reduction from the chain graph insertion problem (CG-IP) [Yannakakis 1981] [Chen et al. 2006]

 $G = (X \cup Y, E)$

A bipartite graph G is **chain graph** if there exists a permutation $\varphi : \{1, ..., |Y|\} \to Y$ such that $\eta(\varphi(1)) \subseteq \eta(\varphi(2)) \subseteq ... \subseteq \eta(\varphi(|Y|))$ where $\eta(v) = \{w \in X : (v,w) \in E\}$ is the set of adjacent nodes of v.

$$\eta(A) = \{1,2\} \ \eta(C) = \{2,3\}$$

LPFP is NP-hard by reduction from the chain graph insertion problem (CG-IP) [Yannakakis 1981] [Chen et al. 2006]

 $G = (X \cup Y, E)$

CG-IP: Given a bipartite graph G and an integer k, does there exists a chain graph $G' = (X \cup Y, E')$ such that $E \subset E'$ and |E| + k = |E'|?

k=3 $\eta(A)=\{1,2\}$ $\eta(B)=\{1\}$ $\eta(C)=\{1,2,3\}$ $\eta(D)=\{1,2,3,4,5\}$

such that $E \subset E'$ and |E| + k = |E'|?

represent a linear perfect phylogeny when k bits are flipped from 0 to 1?

Lemma: A bipartite graph G with k edges inserted is a chain graph if and only if B represents a linear perfect phylogeny when k bits are flipped.

Calculating the test statistic via constraint programming

Phyolin

Objective Minimize the total number of flips such that B' represents a linear perfect phylogeny

Decision Variables

The values in matrix B' after flipping. $x_{ij} \in \{0,1\}^{n imes m}$ The position of the one-state of each mutation in the total order. $c_k \in [m]$

Total number of variables: nm + m

Model constraints

Model constraints

 $O \subseteq O \subseteq O \subseteq O \subseteq O$ •2 •3 5

> 1 global constraint (ALLDIFFERENT)

Simulating an acute myeloid leukemia (AML) cohort

patient	pattern	m	n [17]
AML-2	Linear	5	7931
AML-8	Linear	3	4675
AML-10	Linear	4	8729
AML-33	Linear	3	8120
AML-47	Linear	3	6491
AML-58	Linear	3	8170
AML-53	Branched	3	8013
AML-62	Branched	6	4027
AML-63	Branched	4	8347
AML-67	Branched	7	6024
AML-69	Branched	3	7462
AML-74	Branched	5	9279

m = number of mutations n = number of cells

10 replications per patient $eta^*=0.05$

IBM ILOG CP Optimizer with 500 s time limit

Phyolin Simulated AML Cohort Results

patient	pattern	m	n	median	Phyolin	median
			[17]	flips	median	$\hat{\beta}$
					flips	
AML-2	Linear	5	7931	1826	1039	0.037
AML-8	Linear	3	4675	759	294	0.029
AML-10	Linear	4	8729	1427	584	0.037
AML-33	Linear	3	8120	1091	350	0.027
AML-47	Linear	3	6491	1135	488	0.032
AML-58	Linear	3	8170	1280	472	0.029
AML-53	Branched	3	8013	544	2220	0.44
AML-62	Branched	6	4027	726.5	2299	0.19
AML-63	Branched	4	8347	1238.5	1432	0.084
AML-67	Branched	7	6024	1061.5	6440	0.31
AML-69	Branched	3	7462	651.5	2122	0.16
AML-74	Branched	5	9279	1020	294	0.17

10 replications per patient $eta^* = 0.05$

IBM ILOG CP Optimizer with 500 s time limit

29

Comparison to Deep Learning Approach [Azer et al. 2020]

Deep Learning Approach

Retrained network for input size 9300 x 7, 10 hidden layers of 100 units and 0.9 dropout rate on 5000 training examples and 500 epochs 30

Runtime comparison

Deep Learning [Azer et al. 2020]

Training time with 5000 randomly generated training examples.

Epochs	Time	Training Accuracy
200	2168s (36.1 min)	64.1%
500	3997s (66.6 min)	64.8%

Application to two acute lymphoblastic leukemia patients [Gawad et al. 2010]

patient	cells sequenced [10]	mutations	Phyolin flips	\hat{eta}	β^* [10]
Patient 2	115	16	403	0.36	0.18
Patient 6	146	10	191	0.15	0.18

	Phyolin	Deep Learning [Azer et al. 2020]
Patient 2	Branched	Branched

Application to two acute lymphoblastic leukemia patients [Gawad et al. 2010]

patient	cells sequenced [10]	mutations	Phyolin flips	\hat{eta}	β^* [10]
Patient 2	115	16	403	0.36	0.18
Patient 6	146	10	191	0.15	0.18

	Phyolin	Deep Learning [Azer et al. 2020]
Patient 2	Branched	Branched
Patient 6	Linear	Linear

Conclusions and future work

<u>Phyolin</u>

- Easily and accurately assess the plausibility of a linear perfect phylogeny
- Code available at https://github.com/elkebir-group/phyolin

Future Work

- Incorporate false positives and doublets
- Consider copy number aberrations
- Explore evolutionary models beyond the infinite sites model
- Control for Type I error as a result of sampling bias

Acknowledgements

El-Kebir group

National Science Foundation (CCF-1850502)

- Mohammed El-Kebir
- Nuraini Aguse
- Yuanyuan Qi
- Jiaqi Wu
- Sarah Christensen
- Palash Sashittal
- Juho Kim
- Jackie Oh
- Chuanyi Zhang

Thank you to my CS598MEB Computational Cancer Genomics classmates for their helpful feedback and reviews of this work.