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Identify treatment targets Understand metastatic 
development

Compare evolutionary 
patterns across patients

[Nowell 1976]



Linear Evolution

Modes of Cancer Evolution
How do tumor cells respond to selective pressures and evolve over time?
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Linear Evolution

Modes of Cancer Evolution
How do tumor cells respond to selective pressures and evolve over time?
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[Davis et al. 2017]

Branched Evolution

Time Time

Given single-cell data, can we discern between linear and branched evolution?
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Given single-cell data, can we reconstruct the 
tumor’s evolution?

9

c1 1 0 0 1 0

c2 1 1 0 1 0

c3 0 0 0 1 0

c4 1 0 0 1 0

c5 1 ? 0 1 1

0 False Negative

1 False Positive

? Missing Data

1 Doublet

mutations 

ce
lls

c3

c1
c2

c4

c5 c6



Given single-cell data, can we reconstruct the 
tumor’s evolution?
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SPhyR [El-Kebir 2018]
SCARLET [Satas et al. 2020]

Data Model
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SCITE [Jahn et al. 2016]
OncoNEM [Ross & Markowetz 2016]

SiFit/SiCloneFit [Zafar et al. 2017/2019] 
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Model Inference Method
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Given single-cell data, can we discern between 
linear and branched evolution? [Azer et al. 2020]
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Key idea: Assessing the plausibility of linear evolution from single-cell DNA data
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Key idea: Assessing the plausibility of linear evolution from single-cell DNA data
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Characterization of linear perfect phylogeny
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Characterization of linear perfect phylogeny
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The one-state of a mutation is the subset 
of cells with character state equal to 1.

c1 1 0 0 0 0

c2 1 1 1 0 0

c3 1 1 1 0 0

c4 1 1 1 1 0

c5 1 1 1 1 1

m mutations

n 
ce

lls



Characterization of linear perfect phylogeny
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The one-state of a mutation is the subset 
of cells with character state equal to 1.

We  say B represents a linear perfect 
phylogeny if there exists a total order on 
the mutation one-states with respect to the 
subset relation. 
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Performing the hypothesis test
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A CB D

1 2 3 4 5

A bipartite graph G is chain graph if there 
exists a permutationφ : {1, . . . , |Y |} → Y 
such that η(φ(1)) ⊆ η(φ(2)) ⊆ . . . ⊆ η(φ(|Y |) 
where η(v) = {w ∈X : (v,w) ∈ E} is the set of 
adjacent nodes of v.

LPPFP is NP-hard by reduction from the chain graph 
insertion problem (CG-IP) [Yannakakis 1981]

[Chen et al. 2006]
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A CB D

1 2 3 4 5

CG-IP: Given a bipartite graph G and an integer 
k, does there exists a chain graph                          
such that 

LPFP is NP-hard by reduction from the chain graph 
insertion problem (CG-IP) [Yannakakis 1981]

[Chen et al. 2006]
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0 otherwise

CG-IP: Given a bipartite graph G and an integer 
k, does there exists a chain graph                          
such that 

k-LPPFP: Given a binary matrix B, does B 
represent a linear perfect phylogeny when k bits 
are flipped from 0 to 1?

LPPFP is NP-hard by reduction from the chain graph 
insertion problem (CG-IP) [Yannakakis 1981]

[Chen et al. 2006]
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Lemma: A bipartite graph G with k edges inserted is a chain graph if and only if B 
represents a linear perfect phylogeny when k bits are flipped.  
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LPFP is NP-hard by reduction from the chain graph 
insertion problem (CG-IP) [Yannakakis 1981]

[Chen et al. 2006]



Calculating the test statistic via constraint programming
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Minimize the total number of flips such 
that B’ represents a linear  perfect 

phylogeny

Decision Variables

The values in matrix B’ after flipping.

The position of the one-state of each 
mutation in the total order.
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Model constraints
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10 replications per patient

IBM ILOG CP Optimizer with 500 s time limit

Simulating an acute myeloid leukemia (AML) cohort
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Linear Evolution

Branched Evolution

[Morita et al. 2020]

m = number of mutations
n = number of cells



Phyolin Simulated AML Cohort Results
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10 replications per patient

IBM ILOG CP Optimizer with 500 s time limit



Comparison to Deep Learning Approach [Azer et al. 2020]
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Deep Learning Approach

Retrained network for input size 9300 x 7, 10 hidden layers of 100 units and 0.9 dropout rate on 5000 training examples and 500 epochs



Runtime comparison 
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Phyolin Deep Learning [Azer et al. 2020]

Training time with 5000 randomly generated 
training examples. 

Epochs Time Training 
Accuracy

200 2168s (36.1 min) 64.1%

500 3997s (66.6 min) 64.8%



Application to two acute lymphoblastic leukemia 
patients [Gawad et al. 2010]
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Phyolin Deep Learning
[Azer et al. 2020]

Patient 2 Branched Branched

Patient 6 Linear Linear



Application to two acute lymphoblastic leukemia 
patients [Gawad et al. 2010]

33Patient 6 [Kuipers et al. 2017]

Phyolin Deep Learning
[Azer et al. 2020]

Patient 2 Branched Branched

Patient 6 Linear Linear



Conclusions and future work

Phyolin

● Easily and accurately assess the plausibility of a linear perfect phylogeny
● Code available at  https://github.com/elkebir-group/phyolin

Future Work

● Incorporate false positives and doublets
● Consider copy number aberrations
● Explore evolutionary models beyond the infinite sites model 
● Control for Type I error as a result of sampling bias
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https://github.com/elkebir-group/phyolin
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