Counting and Sampling Problems in Computational Biology

<u>Mohammed El-Kebir</u>, Jackie Oh, Yuanyuan Qi and Palash Sashittal Department of Computer Science, University of Illinois, Urbana Champaign

MCW 2020, July 9th, 2020

- How similar are genome sequences? \rightarrow Edit Distance
- What is the evolutionary history of all species? \rightarrow Steiner Tree

Problem Π : Given input *X* find output *Y* such that *Z*.

space of feasible solutions $\Pi(X)$

- How similar are genome sequences? \rightarrow Edit Distance
- What is the evolutionary history of all species? \rightarrow Steiner Tree

Problem Π : Given input *X* find output *Y* such that *Z*.

Challenge 1: Optimization problems inspired by biology often NP-hard

space of feasible solutions $\Pi(X)$

Integer linear programming

- How similar are genome sequences? \rightarrow Edit Distance
- What is the evolutionary history of all species? \rightarrow Steiner Tree

Problem Π : Given input *X* find output *Y* such that *Z*.

Challenge 1: Optimization problems inspired by biology often NP-hard

Challenge 2: Multiple solutions due to

- Problem itself (integer objective function)
- Interest in near-optimal solutions

space of feasible solutions $\Pi(X)$

Integer linear programming

- How similar are genome sequences? \rightarrow Edit Distance
- What is the evolutionary history of all species? \rightarrow Steiner Tree

Problem Π : Given input *X* find output *Y* such that *Z*.

Challenge 1: Optimization problems inspired by biology often NP-hard

Challenge 2: Multiple solutions due to

- Problem itself (integer objective function)
- Interest in near-optimal solutions

space of feasible solutions $\Pi(X)$

Integer linear programming

Satisfiability

Outline

Solving problems in computational biology via approximate model counting

Reconstructing a tumor's evolution from sequencing data

Reconstructing transmissions during outbreaks

Outline

Solving problems in computational biology via approximate model counting

Yuanyuan Qi

Jackie Oh

Reconstructing a tumor's evolution from sequencing data Reconstructing transmissions during outbreaks

Clonal Evolution Theory of Cancer [Nowell, 1976]

Intra-Tumor Heterogeneity

Phylogenetic Tree **T**

DNA Sequencing of Tumors

Bulk DNA Sequencing *n* mutations **m** samples **S**₁ 0.00.80.80.00.0)'0.8S₂ 0.6 0.6 0.0 0.00.0 0.70.4/0.00.0 0.00.6Variant allele frequency (VAF): 0.8 GGA<mark>G</mark>GAGT A<mark>G</mark>GAGTGG GGA<mark>G</mark>GAGT **G**GAGTGGA S, GGACGAG ...GTAAGAC**G**TGG<mark>ACG</mark>AGTGGACGA... Ο

[El-Kebir et al., Bioinformatics/ISMB 2015]

Perfect Phylogeny Mixture: Given *F*, find *U* and *B* such that *F* = *U B*

[El-Kebir et al., Bioinformatics/ISMB 2015]

- PPM is NP-Complete (El-Kebir et al., 2015)
- #PPM is #P-Complete (Qi et al., 2019)

SAT Formulation

Sum condition: frequency of parent >= sum of frequencies of children

 $(r_1 \lor r_2 \lor r_3 \lor r_4)$ $(\neg r_1 \lor \neg r_2)$ $(\neg r_1 \lor \neg r_3)$ $(\neg r_1 \lor \neg r_4)$ $(\neg r_2 \lor \neg r_3)$ $(\neg r_2 \lor \neg r_4)$ $(\neg r_3 \lor \neg r_4)$ $(r_1 \lor e_1 \lor e_2)$ $(\neg r_1 \lor \neg e_1)$ $(\neg r_1 \lor \neg e_2)$ $(\neg e_1 \lor \neg e_2)$

- Constraints:
 - Unique root
 - Unique parents
 - Cycle prevention
 - Sum condition
- Complexity:
 - O(n|E| + Nm|E|)variables
 - $O(|E|^2 + Nm|E|)$ clauses

[Qi and El-Kebir, In preparation]

Sampling results using SAT formulation

DNA Sequencing of Tumors (2/2)

Phylogeny Inference from Single-cell Data

Goal: Given single-cell sequencing data, sample possible phylogenetic trees **Requirement**: Evolutionary model for somatic mutations

Infinite Sites Assumption vs k-Dollo Model

[El-Kebir, Bioinformatics/ECCB 2018]

k-Dollo Phylogeny Flip and Cluster (*k*-DPFC) problem. Given matrix $D \in \{0, 1, ?\}^{m \times n}$, error rates $\alpha, \beta \in [0, 1]$, integers $k, s, t \in \mathbb{N}$, find matrix $B \in \{0, 1\}^{m \times n}$ and tree *T* such that: (1) *B* has at most *s* unique rows and at most *t* unique columns; (2) $\Pr(D \mid B, \alpha, \beta)$ is maximum; and (3) *T* is a *k*-Dollo phylogeny for *B*.

[El-Kebir, Bioinformatics/ECCB 2018]

SAT Formulation

Variables

Clauses

False positive and false negatives

 $\alpha_{i,j}, i \in [m], j \in [n]$ $\beta_{i,j}, i \in [m], j \in [n]$

Losses

$$d_{i,j}, i \in [m], j \in [n]$$

Clustering (determine duplicate rows/columns)

 $\begin{array}{ll} c_{j}, j \in [m] & x_{i,k,l}, i \in [m], k, l \in [n], k < l \\ r_{l}, l \in [n] & y_{i,j,k}, i, j \in [m], l \in [n], i < j \\ & p_{i,j}, i, j \in [m], i < j \\ & q_{k,l}, k, l \in [n], k < l \end{array}$

Number of variables: $O(m^2n + mn^2)$

Enforce absence of forbidden submatrices

- Enforce that any submatrix of A cannot equal any of the 25 submatrices
- Allow this constraint to be violated if a row or column of the submatrix is a duplicate

$$\begin{vmatrix} \neg \begin{bmatrix} \neg \alpha_{1,1} & \neg \beta_{1,2} \land \neg d_{1,2} \\ \neg \beta_{2,1} \land \neg d_{2,1} & d_{2,2} \\ \beta_{3,1} & \beta_{3,2} \end{bmatrix} \lor \boxed{c_1 \lor c_2 \lor r_1 \lor r_2 \lor r_3}$$

Determine whether two rows or columns are equal Bound the number of false positives and false negatives Enforce the number of cell and mutation clusters

• Encode sum of binary variables as a binary vector using a half/full adder

Number of clauses: $O(m^3n^2 + n^3)$

Results

Simulations show:

- Runtime is reduced by providing the set of known allowed losses
 - Supplementing SCS data with copy number data could help improve runtime
- Runtime is roughly proportional to the number of solutions to a given formula
- DolloSAT is not yet feasible for real datasets (m > 100 cells)
 - Currently working on a cutting planes approach to reduce runtime

 10^{7}

Outline

Solving problems in computational biology via approximate model counting

Palash Sashittal

Reconstructing a tumor's evolution from sequencing data

Reconstructing transmissions during outbreaks

Evolution & Transmission during an Outbreak

https://nextstrain.org/ncov?l=radial

Evolutionary history: Phylogeny

Transmission history: Transmission graph

Directed Transmission Inference (DTI): Input

 \vdash

time

Timed Phylogeny:

A rooted tree T whose vertices are labeled by timestamps $\tau: V(T) \rightarrow \mathbb{R}^{\geq 0}$ s.t. $\tau(u) < \tau(v)$ for all pairs (u, v) where u is an ancestor of v.

Directed Transmission Inference (DTI): Input

Timed Phylogeny:

A rooted tree T whose vertices are labeled by timestamps $\tau: V(T) \rightarrow \mathbb{R}^{\geq 0}$ s.t. $\tau(u) < \tau(v)$ for all pairs (u, v) where u is an ancestor of v.

Epidemiological Data:

For each host $s \in \Sigma$, we have an entrance time $\tau_e(s)$ and removal time $\tau_r(s)$ and leaves are labeled by hosts.

Directed Transmission Inference (DTI): Input

Timed Phylogeny:

A rooted tree *T* whose vertices are labeled by timestamps $\tau: V(T) \rightarrow \mathbb{R}^{\geq 0}$ s.t. $\tau(u) < \tau(v)$ for all pairs (u, v) where *u* is an ancestor of *v*.

Epidemiological Data:

For each host $s \in \Sigma$, we have an entrance time $\tau_e(s)$ and removal time $\tau_r(s)$ and leaves are labeled by hosts.

Contact Map:

A directed graph with vertex set given by the set of hosts Σ indicating putative transmission pairs.

Directed Transmission Inference (DTI): Output

Timed Phylogeny:

A rooted tree T whose vertices are labeled by timestamps $\tau: V(T) \rightarrow \mathbb{R}^{\geq 0}$ s.t. $\tau(u) < \tau(v)$ for all pairs (u, v) where u is an ancestor of v.

Epidemiological Data:

For each host $s \in \Sigma$, we have an entrance time $\tau_e(s)$ and removal time $\tau_r(s)$ and leaves are labeled by hosts.

Contact Map:

A directed graph with vertex set given by the set of hosts Σ indicating putative transmission pairs.

Internal Vertex Labeling and Transmission Tree:

A host labeling of a timed phylogeny T is a function $\ell : L(T) \to \Sigma$, assigning a host $\ell(u)$ to each vertex u of T such that the resulting transmission network S is a spanning tree of the contact map C.

Directed Transmission Inference (DTI): Output

Timed Phylogeny:

A rooted tree T whose vertices are labeled by timestamps $\tau: V(T) \rightarrow \mathbb{R}^{\geq 0}$ s.t. $\tau(u) < \tau(v)$ for all pairs (u, v) where u is an ancestor of v.

Epidemiological Data:

For each host $s \in \Sigma$, we have an entrance time $\tau_e(s)$ and removal time $\tau_r(s)$ and leaves are labeled by hosts.

Contact Map:

A directed graph with vertex set given by the set of hosts Σ indicating putative transmission pairs.

Internal Vertex Labeling and Transmission Tree:

A host labeling of a timed phylogeny T is a function $\ell : L(T) \to \Sigma$, assigning a host $\ell(u)$ to each vertex u of T such that the resulting transmission network S is a spanning tree of the contact map C.

Directed Transmission Inference (DTI): Output

Timed Phylogeny:

A rooted tree T whose vertices are labeled by timestamps $\tau: V(T) \rightarrow \mathbb{R}^{\geq 0}$ s.t. $\tau(u) < \tau(v)$ for all pairs (u, v) where u is an ancestor of v.

Epidemiological Data:

For each host $s \in \Sigma$, we have an entrance time $\tau_e(s)$ and removal time $\tau_r(s)$ and leaves are labeled by hosts.

Contact Map:

A directed graph with vertex set given by the set of hosts Σ indicating putative transmission pairs.

Internal Vertex Labeling and Transmission Tree:

A host labeling of a timed phylogeny T is a function $\ell : L(T) \to \Sigma$, assigning a host $\ell(u)$ to each vertex u of T such that the resulting transmission network S is a spanning tree of the contact map C.

Timed Phylogeny and epidemiological data

We show that Transmission Tree Inference Problem is <u>NP-complete</u> and the corresponding counting problem is <u>#P-complete</u> by reduction from the <u>1-in-3SAT problem</u>

Sampling DTI Solutions

Naïve Rejection Sampling

[Sashittal and El-Kebir, Bioinformatics/ISMB 2020]

SAT based Almost Uniform Sampling (UniGen)

Vertex Labeling $\boxed{\text{onehot}(\{x_{i,1}, \cdots, x_{i,m}\}), \quad \forall v_i \in V(T).}$ Transmission Edges $\boxed{(x_{i,s} \land x_{j,t}) \implies c_{s,t}, \quad \forall (v_i, v_j) \in E(T) \text{ and } s, t \in \Sigma.}$

Root Host Constraint

$$x_{i,t} \implies \neg c_{s,t}, \quad \forall s, t \in \Sigma, s \neq t,$$

Unique Infector Constraint

$$\neg c_{s,t} \lor \neg c_{s,t'}, \quad t, t' \in \Sigma \text{ and } t \neq t'$$

$$\neg x_{i,s} \lor \neg x_{j,t} \lor \neg x_{k,s} \lor \neg x_{l,t}, \quad \forall s, t \in \Sigma, s \neq t.$$

Sampling DTI Solutions

Not Efficient

Naïve Rejection Sampling

[Sashittal and El-Kebir, Bioinformatics/ISMB 2020]

Efficient and Accurate

 $O(nm + m^2)$ variables and $O(nm^2 + n^2m^2)$ constraints

Vertex Labeling

onehot
$$(\{x_{i,1},\cdots,x_{i,m}\}), \forall v_i \in V(T).$$

Transmission Edges

 $(x_{i,s} \wedge x_{j,t}) \implies c_{s,t}, \quad \forall (v_i, v_j) \in E(T) \text{ and } s, t \in \Sigma.$

Root Host Constraint

$$x_{i,t} \implies \neg c_{s,t}, \quad \forall s, t \in \Sigma, s \neq t,$$

Unique Infector Constraint

$$\neg c_{s,t} \lor \neg c_{s,t'}, \quad t, t' \in \Sigma \text{ and } t \neq t'$$

$$\neg x_{i,s} \lor \neg x_{j,t} \lor \neg x_{k,s} \lor \neg x_{l,t}, \quad \forall s, t \in \Sigma, s \neq t.$$

Simulation Results

Simulations (with complete sampling) show that:

(a) <u>Weak Transmission Bottleneck needs to be considered</u> for inferring and sampling the solutions.

(b) Naïve sampling is infeasible for large outbreaks

(c) <u>TiTUS uniformly samples</u> the solution space

HIV Outbreak in 1988-2006 among 11 patients

TiTUS reconstruct the transmission history of a HIV outbreak:

(a) We generate 100,000 samples from the solution space and build a consensus of the selected solutions

(b) Consensus transmission tree recovers 9/10 transmission pairs in the outbreak

(c) Our method is robust for the choice of percentile threshold

Conclusions and Future Directions

Solving problems in computational biology via approximate model counting

model counting

column generation

Guidance/best practices on efficient SAT formulations

Acknowledgements

This work was funded by the National Science Foundation (CCF-1850502 and CCF-2027669)

- Kuldeep Meel
- Mate Soos

- El-Kebir group
- Jackie Oh
- Palash Sashittal
- Yuanyuan Qi
- Chuanyi Zhang

- Jiaqi Wu
- Juho Kim
- Leah Weber
 - Nuraini Aguse
 - Sarah Christensen

BACKUP

Problem Statement

Inputs:

- Binary matrix B ∈ {0, 1}^{m×n} where entry b_{i,j} = 1 if and only if cell i contains mutation j
- A set *L* of mutations that can be lost
- Number of mutation clusters *s*
- Number of cell clusters t
- False positive rate α , false negative rate β

Desired output:

A rooted tree T that meets the following conditions:

- Each vertex is labeled by a vector $v \in \{0, 1\}^t$
- The root of T is labeled by the zero vector
- Each mutation in [n] labels exactly one gain edge
- Each mutation in *L* labels at most one loss edge
- Each leaf of T is labeled by a row of matrix $C \in \{0, 1\}^{s \times t}$
 - C is the result of correcting errors in B and clustering so that there are s distinct rows and t distinct columns

A matrix is a 1-Dollo Completion <u>if and only if</u> it does not contain any forbidden submatrices

There are 25 forbidden submatrices [El Kebir et al.]

Background

Accurate inference of transmission networks if pivotal for

- real-time outbreak management,
- public health policies.

Traditional epidemiological approaches involve:

- fieldwork and interviews,
- contact tracing.

With decreasing costs of genomic sequencing, **molecular epidemiology** has become indispensable. (e.g. ~2500 SARS-CoV-2 sequences on GISAID.)

Challenges in Transmission Network Inference

• Incomplete lineage sorting:

pathogen evolutionary history does not match the transmission history of the outbreak.

- High mutation rates and/or long incubation times result in withinhost diversity.
- Further complication arises due to multi-strain infection or weak transmission bottleneck.

Simulation Results

Simulations (with complete sampling) show that:

(a) <u>Weak Transmission Bottleneck needs to be considered</u> for inferring and sampling the solutions.

(b) Naïve sampling is infeasible for large outbreaks

(c) <u>TiTUS uniformly samples</u> the solution space

Selection Criteria

Following selection criteria are proposed (for a completely sampled outbreak):

- (a) Number of transmitted strains in the outbreak
- (b) Number of unsampled lineages in the outbreak

(c) We find that optimal performance is achieved at percentile threshold of 0.01

TiTUS vs. Previous Work

Method	Constraint
Simple Recursion	Contact Map —
TITUS	Contact Map + Unique Infector 🥿
STraTUS[2]	Contact Map + Unique Infector + Strong Transmission Bottleneck
Kenah[3]	Contact Map + Unique Infector + Strong Transmission Bottleneck + Order of Infection

[2] Matthew D Hall and Caroline Colijn. Molecular biology and Evolution (2019).[3] Eben Kenah *et al.* PLoS Computational Biology (2016).