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Combinatorial Optimization in Computational Biology
• How similar are genome sequences? à Edit Distance
• What is the evolutionary history of all species? à Steiner Tree

Problem Π: Given input 𝑋
find output 𝑌 such that 𝑍.

space of feasible 
solutions Π(𝑋)

𝑌
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Outline

Reconstructing a tumor’s evolution 
from sequencing data

Reconstructing transmissions 
during outbreaks

bulk 
sequencing

single-cell 
sequencing

Solving problems in computational biology 
via approximate model counting
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Cancer is an Evolutionary Process

Clonal Evolution Theory of Cancer 
[Nowell, 1976]

Founder 
tumor cell
with somatic mutation: 
(e.g. BRAF V600E)
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Cancer is an Evolutionary Process

Clonal Evolution Theory of Cancer 
[Nowell, 1976]

Clonal expansion
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Cancer is an Evolutionary Process

Clonal Evolution Theory of Cancer 
[Nowell, 1976]

New clones
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Cancer is an Evolutionary Process

Intra-Tumor 
Heterogeneity

Clonal Evolution Theory of Cancer 
[Nowell, 1976]

Phylogenetic Tree T

Identify treatment targets Understand metastatic 
development

Compare evolutionary 
patterns across patients
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DNA Sequencing of Tumors
Bulk DNA Sequencing

S3

S1
S2

AGGAGTGG
GGAGGAGT

…GTAAGACGTGGACGAGTGGACGA…
GGACGAG

GGAGTGGA
GGAGGAGT

Variant allele frequency (VAF): 0.8

S3

12[El-Kebir et al., Bioinformatics/ISMB 2015]
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Perfect Phylogeny Mixture (PPM)

S3

S1
S2

13[El-Kebir et al., Bioinformatics/ISMB 2015]

Perfect Phylogeny Mixture:
Given F, find U and B such that F = U B
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• PPM is NP-Complete (El-Kebir et al., 2015)
• #PPM is #P-Complete (Qi et al., 2019)

Sampling results by PhyloWGS
[Deshwar et al., 2015]

Sampling PPM Solutions

14[Qi et al., Algorithms in Molecular Biology, 2019]



SAT Formulation

• Constraints:
• Unique root
• Unique parents
• Cycle prevention
• Sum condition

• Complexity:
• 𝑂 𝑛 𝐸 + 𝑁𝑚 𝐸

variables
• 𝑂 𝐸 " +𝑁𝑚 𝐸

clauses
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Sum condition: frequency of parent >= sum of frequencies of children

15[Qi and El-Kebir, In preparation]



Sampling using UniGen v2

Sampling results using SAT formulation

Sampling results by PhyloWGS
[Deshwar et al., 2015]

16[Qi and El-Kebir, In preparation]



DNA Sequencing of Tumors (2/2)

c3

c1
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c1 1 0 0 0 0

c2 1 1 1 0 0

c3 0 0 0 1 0

c4 1 0 0 1 0

c5 1 ? 0 1 1

c6 1 0 0 1 0

0 False Negative

Single-cell DNA Sequencing ($$$)

1 False Positive

? Missing Data
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Phylogeny Inference from Single-cell Data

Goal: Given single-cell sequencing data, sample possible phylogenetic trees
Requirement: Evolutionary model for somatic mutations
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Infinite Sites Assumption vs k-Dollo Model
SNVs can be lost due to CNAs

copy number loss

Infinite Sites Assumption:
• No parallel evolution of SNVs
• No loss of SNVs
• SCITE [Jahn et al. 2016]
• OncoNEM [Ross and Markowetz, 2016]

k-Dollo Parsimony Model:
• No parallel evolution of SNVs
• SNV can be lost up to k times
We will use the 1-Dollo model, where k=1 19[El-Kebir, Bioinformatics/ECCB 2018]
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Input Matrix D Binary Matrix B
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B 2 {0, 1}m⇥n and tree T such that: (1) B has at most s unique rows and at
most t unique columns; (2) Pr(D | B,↵,�) is maximum; and (3) T is a k-Dollo
phylogeny for B.
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Variables Clauses

Determine whether two rows or columns are equal

SAT Formulation

False positive and false negatives

Losses

Clustering (determine duplicate rows/columns)

Enforce absence of forbidden submatrices
• Enforce that any submatrix of A cannot equal any of 

the 25 submatrices
• Allow this constraint to be violated if a row or column 

of the submatrix is a duplicate

Bound the number of false positives and false negatives

Enforce the number of cell and mutation clusters

• Encode sum of binary variables as a binary vector 
using a half/full adder

[Oh and El-Kebir, In preparation] 21



Results

Simulations show:
• Runtime is reduced by providing the set of known allowed losses

• Supplementing SCS data with copy number data could help improve 
runtime

• Runtime is roughly proportional to the number of solutions to a given formula
• DolloSAT is not yet feasible for real datasets (m > 100 cells)

• Currently working on a cutting planes approach to reduce runtime

[Oh and El-Kebir, In preparation] 22

number 𝑚 of cells (𝑛 = 5 mutations) number 𝑛 of mutations (𝑚 = 5 cells)
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Evolution & Transmission during an Outbreak

Evolutionary history: Phylogeny Transmission history: Transmission graph
https://nextstrain.org/ncov?l=radial

24



Timed Phylogeny:
A rooted tree 𝑇 whose vertices are labeled by time-
stamps 𝜏 ∶ 𝑉(𝑇) ⟶ ℝ!" s.t. 𝜏 𝑢 < 𝜏(𝑣) for all
pairs (𝑢, 𝑣) where 𝑢 is an ancestor of 𝑣.

Directed Transmission Inference (DTI): Input

[Sashittal and El-Kebir, Bioinformatics/ISMB 2020] 25



Epidemiological Data:
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Complexity

We show that Transmission Tree Inference Problem is NP-complete and the corresponding 
counting problem is #P-complete by reduction from the 1-in-3SAT problem

Timed Phylogeny and epidemiological data

Contact Map

[Sashittal and El-Kebir, Bioinformatics/ISMB 2020] 31



Naïve Rejection Sampling SAT based Almost Uniform Sampling (UniGen)

Vertex Labeling

Transmission Edges

Root Host Constraint

Unique Infector Constraint

Sampling DTI Solutions

[Sashittal and El-Kebir, Bioinformatics/ISMB 2020] 32



Naïve Rejection Sampling
Not Efficient Efficient and Accurate

Transmission Edges

Root Host Constraint

Unique Infector Constraint

Vertex Labeling

Sampling DTI Solutions

𝑂 𝑛𝑚 +𝑚% 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑎𝑛𝑑 𝑂 𝑛𝑚% + 𝑛%𝑚% 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

[Sashittal and El-Kebir, Bioinformatics/ISMB 2020] 33



Simulation Results

Simulations (with complete sampling) show that:

(a) Weak Transmission Bottleneck needs to be considered for inferring and sampling the solutions.

(b) Naïve sampling is infeasible for large outbreaks

(c) TiTUS uniformly samples the solution space

[Sashittal and El-Kebir, Bioinformatics/ISMB 2020] 34



HIV Outbreak in 1988-2006 among 11 patients

TiTUS reconstruct the transmission history of a HIV outbreak:

(a) We generate 100,000 samples from the solution space and build a consensus of the selected solutions

(b) Consensus transmission tree recovers 9/10 transmission pairs in the outbreak

(c) Our method is robust for the choice of percentile threshold

α = 0.01

[Sashittal and El-Kebir, Bioinformatics/ISMB 2020] 35



Conclusions and Future Directions

bulk 
sequencing

single-cell 
sequencing

Solving problems in computational biology via approximate model counting

36

Weighted 
model counting

Guidance/best practices on 
efficient SAT formulations

Cutting planes & 
column generation
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Problem Statement

Input 
matrix B

Corrected 
matrix B'

Clustered 
matrix C

1-Dollo 
Completion 

matrix A

1-Dollo 
Phylogeny T

A matrix is a 1-Dollo 
Completion if and only if it 
does not contain any 
forbidden submatrices

There are 25 forbidden 
submatrices [El Kebir et al.]
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With decreasing costs of genomic sequencing, 
molecular epidemiology has become indispensable.
(e.g. ~2500 SARS-CoV-2 sequences on GISAID.)

Traditional epidemiological approaches involve:
• fieldwork and interviews,
• contact tracing.

Accurate inference of transmission networks if pivotal for
• real-time outbreak management,
• public health policies.

Background



• Incomplete lineage sorting: 
pathogen evolutionary history does 
not match the transmission history 
of the outbreak.

• High mutation rates and/or long 
incubation times result in within-
host diversity.

• Further complication arises due to 
multi-strain infection or weak 
transmission bottleneck.

Challenges in Transmission Network Inference



Simulation Results

Simulations (with complete sampling) show that:

(a) Weak Transmission Bottleneck needs to be considered for inferring and sampling the solutions.

(b) Naïve sampling is infeasible for large outbreaks

(c) TiTUS uniformly samples the solution space



Selection Criteria

Following selection criteria are proposed (for a completely sampled outbreak):

(a) Number of transmitted strains in the outbreak

(b) Number of unsampled lineages in the outbreak

(c) We find that optimal performance is achieved at percentile threshold of 0.01
H1

H2



TiTUS vs. Previous Work

[2] Matthew D Hall and Caroline Colijn. Molecular biology and Evolution (2019).
[3] Eben Kenah et al. PLoS Computational Biology (2016).

Method Constraint

Simple Recursion Contact Map

TiTUS Contact Map + Unique Infector

STraTUS[2] Contact Map + Unique Infector +
Strong Transmission Bottleneck

Kenah[3]
Contact Map + Unique Infector +
Strong Transmission Bottleneck + 
Order of Infection


