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Cancer is an evolutionary process




Cancer is an evolutionary process
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DNA sequencing of tumors

Bulk DNA Sequencing ($) Single-cell DNA Sequencing ($$9$)
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DNA sequencing of tumors
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Phylogeny inference from DNA sequencing

Bulk .
Method Sequencing S'“g'a‘;;"e" How many single-cells

Data should you sequence

SCITE X to minimize costs?

[Jahn et al., 2016]

OncoNEM X

[Ross & Markowetz, 2017]

SPhyR X

[El-Kebir, 2018]

SiCloneFit X

[Zafar et al., 2019]

PhiSCS X X

[Malikic et al., 2019a]

B-SCITE X X

[Malikic et al. 2019b]




Key idea: Design a cost-effective single-cell sequencing
experiment using bulk DNA data
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Key idea: Bulk data guides cost effective single-cell experiment design

Tl @ SINGLE-CELL SEQUENCING PowER CALCULATION
(SCS-PC)

‘ o @ Given a set 7 of candidate phylogenies, frequencies f
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Key idea: Bulk data guides cost effective single-cell experiment design

Tl @ SINGLE-CELL SEQUENCING PowER CALCULATION
(SCS-PC)

‘ o @ Given a set 7 of candidate phylogenies, frequencies f and
confidence level v, |

O
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Key idea: Bulk data guides cost effective single-cell experiment design

SINGLE-CELL SEQUENCING POWER CALCULATION

(SCS—PC)
Given a set 7 of candidate
confidence level 7, find the

phylogenies, frequencies f and

minimum number k* of single cells

needed to determine the true phylogeny T among 7 with

probability at least 7.

Cancer Cell Fractions f  Confidence Level

y=09 mp k*




Solvmg the SCS-PC




Key idea: condition on each tree being the true tree and solve SCS-PC

T =1T; @ SCS POWER CALCULATION|FOR PHYLOGENY T
(Flscs-pa)

‘ o @ Given a set 7 of candidate phylogenies and|a phylogeny T € TJ

frequencies f and confidence level 7,

Cancer Cell Fractions f  Confidence Level
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Key idea: condition on each tree being the true tree and solve SCS-PC

T=T (9)
©) (@ (o

SCS POWER CALCULATION FOR PHYLOGENY T
(T-SCS-PC)
Given a set 7 of candidate phylogenies and a phylogeny T € T,

frequencies f and confidence level v, find|the minimum number k*

of single cells needed such that the probability of a successful SCS
experiment is greater than or equal to 7.

Cancer Cell Fractions f  Confidence Level
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k* = arg min P(Success | T, T ,k,f) >~
k




What is a successful experiment given T?

Cancer Cell Fractions f
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I SCOPIT
[Davis et al. 2019]




What is a successful experiment given T?

Cancer Cell Fractions f
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What is a successful experiment given T?

Cancer Cell Fractions f
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What is a successful experiment given T?

Cancer Cell Fractions f
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I But we don’t always need to observe all clones for a
successful experiment!

[Davis et al. 2019]




Key idea: distinguishing feature _
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Key idea: distinguishing feature
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I Success is defined as observing a distinguishing feature.




Probabilistic model

Cancer Cell Fractions f

\K")\> oo 6\> / Probability p
W , ‘

Success ~ Mult(p ,k)
3 cells -
® @0

k

Clonal Prevalence U

SO\ O\
@ WY

£ 0.09 : 036 : 0.55 : 1 1 1

2 1 0
I Success is defined as observing a distinguishing feature.

OO O




Probabilistic model

Cancer Cell Fractions f

@ O _
< />' T /> y ‘ robability p = ().149
Success ~ Mult(p, k)
3 cells ® @ & prob.
0 0 3 0.0
k
0 1 2 0.0

Clonal Prevalence U

SO\ O\
@ WY

. 0.09 | 0.36  0.55 : 1 1 1 | om

I Success is defined as observing a distinguishing feature.

2 1 0 0.009

OO O




Power calculation for fixed tree T

Cancer Cell Fractions f
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7
\J' A 4

L? cells J

k

Clonal Prevalence U

SO\ O\
Pe o
@

k* = arg min P(Success | T, T, k,f) >~
k




Power calculation for fixed tree T

Confidence Level

v = 0.95

P2 0.95

Cancer Cell Fractions f

probability of success

k* = 32
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I k*= 32 is the solution to the T-SCS-PC problem. * | s XK




T
* = 32 k* = 32 *

Solving the SCS-PC
GJOIONNOIONNROIONO
k* = 32
(o) X0, O
k k* =

i k*= 32 is the solution to the SCS-PC problem.




Solving the SCS-PC

Takmg the
maximum yields

and upper
bound

k* = 32

k*—32 k* = 32

Account for multiple Adjust for false
d1st1ngu1sh1ng features negatives

i k*= 32 is the solution to the SCS-PC problem




T-SCS-PC is NP-hard by reduction
from Set Cover

1.00 -

Set Cover (> | T-SCS-PC

()
> 0.75-
% Lemma: Let (T, Ty, f,y =€)
Q . be the T-SCS-PC instance
[ corresponding to Set Cover
h= instance (U,F) .A
S 0% minimum cover has size k*
= if and only if k* is the
T . D smallest integer such that
10 20 30 40 50 .
number of cells to sequence Pr(¥e |u(To, 1)) 2 ¥
Probability of Probability of
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Simulation design

500- X ID % of Trees Clones Mutations Prevalence Noise FNR 3 Doublet &
4 simla 100% 7 7 0% 0 0
- sim1b 10% 7 7 0% 0 0
- sim?2a 100% 7 7 5% 0 0
400- sim2b 10% 7 7 5% 0 0
(7p] sim2¢ 100% T 7 20% 0 0
8 sim3a  100% 7 7 5% 0.2 0.1
o sim3b 10% 7 T 5% 0.2 0.1
= 300- sim4a 100% 10 100 5% 0.2 0.1
G
O e I
—
3
200
S e 100 replications
p 100 e SCOPIT comparison
e SPhyR phylogeny inference
I ¢ ~=0.95
O I




Number of Cells

SCOPIT comparison

ID % of Trees Clones Mutations Prevalence Noise FNR S Doublet §

10° :
simla 100% 7 7 0% 0 0
. . . . simlb 10% 7 7 0% 0 0
sim2a 100% 7 76 5% 0 0
10% sim2b 10% 76 7 5% 0 0
sim2c 100% T 76 20% 0 0
sim3a 100% 7t 7 5% 0.2 0.1
sim3b 10% 74 7 5% 0.2 O
10> H H simda 100% 10 100 5% 0.2 0.1
TR
102
'% i '!' T ' e 100 replications
o i e SCOPIT comparison
e SPhyR phylogeny inference
o

simia simib sim2a sim2b sim3a sim3b

~ = 0.95

B SCOPIT (worst case) 8 SCOPIT (best case) B PhyDOSE




Phylogeny inference with SPhyR

ID % of Trees Clones Mutations Prevalence Noise FNR S Doublet §

Recall

simia sim1b
1.00- l — — simla 100% 7 7 0% 0 0
0.75- ** q ** ; 2 sim1b 10% 7 7 0% 0 0
0.50- : ! o i sim2a  100% 7 P 5% 0 0
0.25- . : . = sim2b 10% 7 7d 5% 0 0
0.00- . I - sim2c 100% 7 7 20% 0 0

v sim2b sim3a  100% 7 7 5% 0.2 0.1
1.00- — _— sim3b 10% 7 7 5% 0.2 0.1
0.75- T T - T : sim4a 100% 10 100 5% 0.2 0.1
050- | ’ ! === U
0.25- = . -
0.00- . . .

sim3a sim3b . .
R == EEmeEn = e 100 replications
0.75- t - | == I .
0.50- . I : e SCOPIT comparison
o : - . e SPhyR phylogeny inference
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Acute myeloid leukemia (AML) cohort

10000

Number of Cells

7500-

5000

2500

B Seq. B k'(y=0.75) B k'(y=0.95)

PhyDOSE k* compared with the original
number of cells sequenced

e Morita et al. (2020) performed high 5
throughput targeted microfluidic single cell :
DNA sequencing on a cohort of 77 patients
with AML. :

e Based on the published variant allele
frequencies, we enumerated between 2
and 316 candidate trees for 24 patients
and used PhyDOSE to estimate k*.




PhyDOSE-IT and phydoser R package

PhyDOSE-IT =

Design of Follow-up Single-cell Sequencing Experiments of Tumors

1071 cells required to sequence with confidence level ;= 0.99 Tree #315 with quantile = 1.000
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confidence level Reset
m
Compare and Visualize Trees
e Select tree [316 trees]

Select tree [316 trees]

Tree 1

select distinguishing feature

oF1

Select featurette

https://phydose.shinyapps.io/PhyDOSE-IT/ https://qgithub.com/elkebir-group/phydoser



https://phydose.shinyapps.io/PhyDOSE-IT/
https://github.com/elkebir-group/phydoser

Conclusions and future work

PhyDOSE Conclusions

e Proposes cost-efficient single-cell experiment design to yield
high-fidelity phylogenies

e Agnostic to the type of single-cell sequencing technology used

e Available as both a web-application and an R package

Future Work

Optimally determine the number of cells to sequence across
multiple biopsies

e Explore evolutionary models beyond the infinite sites model
e Formulate and solve the RE-SCS-PC problem

O  Find out next time what it means to me... £~~
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