Implications of Non-uniqueness of Solutions in Cancer Phylogenetics

Mohammed El-Kebir

University of Illinois at Urbana Champaign, Department of Computer Science

October, 2019

Tumorigenesis: Cell Mutation

Clonal Evolution Theory of Cancer [Nowell, 1976]

Tumorigenesis: Cell Mutation

Clonal Evolution Theory of Cancer [Nowell, 1976]

Tumorigenesis: Cell Mutation

Clonal Evolution Theory of Cancer [Nowell, 1976]

Tumorigenesis: Cell Mutation & Division

Clonal Evolution Theory of Cancer [Nowell, 1976]

Intra-Tumor Heterogeneity

Tumorigenesis: Cell Mutation & Division

Clonal Evolution Theory of Cancer [Nowell, 1976]

Intra-Tumor Heterogeneity Phylogenetic Tree **T**

Question: Why are tumor phylogenies important?

Phylogenies are Key to Understanding Cancer

Phylogenies are Key to Understanding Cancer

These downstream analyses **critically rely** on accurate tumor phylogeny inference

Phylogenies are Key to Understanding Cancer

These downstream analyses **critically rely** on accurate tumor phylogeny inference

Key challenge in phylogenetics:

Accurate phylogeny inference from data at present time

Additional Challenge in Cancer Phylogenetics

Additional Challenge in Cancer Phylogenetics

Additional Challenge in Cancer Phylogenetics

Additional challenge in cancer phylogenetics: Phylogeny inference from mixed bulk samples at present time

Outline

- **<u>1. Background and theory:</u>** [RECOMB-CG 2018, AMOB 2019]
- Perfect Phylogeny Mixture (PPM) problem
- #PPM: exact counting and uniform sampling

2. Simulation results: [RECOMB-CG 2018, AMOB 2019]

- What contributes to non-uniqueness?
- How to reduce non-uniqueness?
- How does non-uniqueness affect current methods?

<u>3. Almost uniform sampling:</u> [To be submitted]

• Reducing PPM to SATISFIABILITY

4. Summarizing solution space: [ISMB/ECCB 2019]

• Multiple consensus tree problem

5. Applications

Mutational signature dynamics [PSB 2020]

Sequencing and Tumor Phylogeny Inference

Sequencing and Tumor Phylogeny Inference

Tumor Phylogeny Inference: Given frequencies F, find phylogeny T and proportions U

Perfect Phylogeny Mixture: [El-Kebir*, Oesper* et al., 2015] Given *F*, find *U* and *B* such that *F* = *U B*

Previous Work

Variant of PPM:

TrAp [Strino *et al.,* 2013], PhyloSub [Jiao *et al.,* 2014] CITUP [Malikic *et al.,* 2015], BitPhylogeny [Yuan *et al.,* 2015] LICHEE [Popic *et al.,* 2015], ...

[Gusfield, 1991]

Restricted PP Tree **T**

Equivalent

Perfect Phylogeny Mixture: [El-Kebir*, Oesper* et al., 2015] Given *F*, find *U* and *B* such that *F* = *U B*

Given F and T (or B), is there a usage matrix U?

Given F and T (or B), is there a usage matrix U?

Given F and T (or B), is there a usage matrix U?

PPM: Given *F*, find *U* and *B* such that *F* = *U B*

Lemma (Ancestry Condition): Given **F** and **T**, for all samples *p* and mutations *k* child of *j*, $f_{pj} \ge f_{pk}$

Ancestry graph G = (V, A); given F

- Vertex for every mutation
- Edge $(j,k) \in A$ iff $f_{pj} \ge f_{pk}$ for all samples p

necessary

PPM: Given *F*, find *U* and *B* such that *F* = *U B*

Lemma (Ancestry Condition): Given **F** and **T**, for all samples *p* and mutations *k* child of *j*, $f_{pj} \ge f_{pk}$

Ancestry graph G = (V, A); given F

- Vertex for every mutation
- Edge $(j,k) \in A$ iff $f_{pj} \ge f_{pk}$ for all samples p

Theorem 1:

T is a solution to the PPM if and only if*T* is a spanning tree of *G* satisfying theSum Condition

Non-uniqueness of Solutions to PPM

Question 1: Can we determine the number of solutions?

Question 2: Can we sample solutions uniformly at random?

Intermezzo: Problems/Algorithms in CS

Problem Π with instance/input X and feasible solution set $\Pi(X)$:

- Decision problem:
 - Is $\Pi(X) = \emptyset$?
- Optimization problem:
 - Find $y^* \in \Pi(X)$ s.t. $f(y^*)$ is optimum.
- Counting problem:
 - Compute $|\Pi(X)|$.
- Sampling problem:
 - Sample uniformly from $\Pi(X)$.
- Enumeration problem:
 - Enumerate all solutions in $\Pi(X)$.

Intermezzo: Problems/Algorithms in CS

Problem Π with instance/input X and feasible solution set $\Pi(X)$:

- Decision problem:
 - Is $\Pi(X) = \emptyset$?
- Optimization problem:
 - Find $y^* \in \Pi(X)$ s.t. $f(y^*)$ is optimum.
- Counting problem:
 - Compute $|\Pi(X)|$.
- Sampling problem:
 - Sample uniformly from $\Pi(X)$.
- Enumeration problem:
 - Enumerate all solutions in $\Pi(X)$.

Algorithm:

Set of instructions for solving problem.

- Exact
- Heuristic

Running time: How does the number of steps scale as a function of |X|?

Intermezzo: Problems/Algorithms in CS

Problem Π with instance/input X and feasible solution set $\Pi(X)$:

- Decision problem:
 - Is $\Pi(X) = \emptyset$?
- Optimization problem:
 - Find $y^* \in \Pi(X)$ s.t. $f(y^*)$ is optimum.
- Counting problem:
 - Compute $|\Pi(X)|$.
- Sampling problem:
 - Sample uniformly from $\Pi(X)$.
- Enumeration problem:
 - Enumerate all solutions in $\Pi(X)$.

Algorithm:

Set of instructions for solving problem.

- Exact
- Heuristic

Running time: How does the number of steps scale as a function of |X|?

Problem != algorithm

Some problems do not admit efficient algorithms

Non-uniqueness of Solutions to PPM

Counting problem

Sampling problem

On the Complexity of #PPM

Question 1: Can we determine the number of solutions?

Question 2: Can we sample solutions uniformly at random?

#PPM: Given *F*, count the number of pairs *(U, B)* composed of mixture matrix *U* and perfect phylogeny matrix *B* such that *F* = *U B*

On the Complexity of #PPM

Question 1: Can we determine the number of solutions?

Question 2: Can we sample solutions uniformly at random?

#PPM: Given *F*, count the number of pairs (*U*, *B*) composed of mixture matrix *U* and perfect phylogeny matrix *B* such that F = U B

#P is the complexity class of counting problems whose decision problems are in NP Every problem in #P can be reduced in polynomial time to any problem in #P-complete, preserving cardinalities

On the Complexity of #PPM

Question 1: Can we determine the number of solutions?

Question 2: Can we sample solutions uniformly at random?

#PPM: Given *F*, count the number of pairs *(U, B)* composed of mixture matrix *U* and perfect phylogeny matrix *B* such that F = U B

#P is the complexity class of counting problems whose decision problems are in NP Every problem in #P can be reduced in polynomial time to any problem in #P-complete, preserving cardinalities

Theorem: #PPM is #P-complete

Theorem: There is no FPRAS for #PPM

Theorem: There is no FPAUS for PPM

Yuanyuan Qi

Outline

- 1. Background and theory: [RECOMB-CG 2018]
- Perfect Phylogeny Mixture (PPM) problem
- #PPM: exact counting and uniform sampling

2. Simulation results: [RECOMB-CG 2018]

- What contributes to non-uniqueness?
- How to reduce non-uniqueness?
- How does non-uniqueness affect current methods?

3. Almost uniform sampling: [To be submitted]

• Reducing PPM to SATISFIABILITY

4. Summarizing solution space: [ISMB/ECCB 2019]

• Multiple consensus tree problem

5. Applications

• Mutational signature dynamics [PSB 2020]

Dikshant Pradhan

What Contributes to Non-uniqueness?

What Contributes to Non-uniqueness?

How to Reduce Non-Uniqueness?

How to Reduce Non-Uniqueness?

How to Reduce Non-Uniqueness?

An Upper Bound for Number of Solutions

An Upper Bound for Number of Solutions

How Does Non-uniqueness affect Methods?

Two current MCMC methods using default parameters:

- PhyloWGS, Deshwar et al., Genom. Biol., 2015 [10,000 samples]
- Canopy, Jiang et al., PNAS, 2016

[~300 samples]

How Does Non-uniqueness affect Methods?

Two current MCMC methods using default parameters:

• PhyloWGS, Deshwar et al., Genom. Biol., 2015 [10,000 samples]

[~300 samples]

Canopy, Jiang et al., PNAS, 2016

How Does Non-uniqueness affect Methods?

Two current MCMC methods using default parameters:

• PhyloWGS, Deshwar et al., Genom. Biol., 2015 [10,000 samples]

[~300 samples]

• Canopy, Jiang et al., PNAS, 2016

Rejection Sampling Does Not Scale

Outline

- 1. Background and theory: [RECOMB-CG 2018]
- Perfect Phylogeny Mixture (PPM) problem
- #PPM: exact counting and uniform sampling

2. Simulation results: [RECOMB-CG 2018]

- What contributes to non-uniqueness?
- How to reduce non-uniqueness?
- How does non-uniqueness affect current methods?

3. Almost uniform sampling: [To be submitted]

• Reducing PPM to SATISFIABILITY

4. Summarizing solution space: [ISMB/ECCB 2019]

Multiple consensus tree problem

5. Applications

Mutational signature dynamics [PSB 2020]

Yuanyuan Qi

Result

Generating 10,000 trees from the solution space almost uniformly at random

Figure 4: Out method samples uniformly: (a) the same simulated instance (m=1, n=7, 297 solution trees); (b) the ranged version of PPM of CRUK0062 (90% confidence interval, m=7, n=15, 160 solutions)

Method

Unigen An almost uniform sampler for SAT (satisfiability) problem⁴.

Reduce PPM to SAT.

⁴Chakraborty, S., Fremont, D. J., Meel, K. S., Seshia, S. A., & Vardi, M. Y_{48} (2015, April). On parallel scalable uniform SAT witness generation.

Boolean Satisfiability

 Goal: find a model that satisfies a propositional formula.

$$a \land (\neg b \lor c) \longrightarrow a \mapsto T, b \mapsto F, c \mapsto F$$

a \land b \land (¬b \lor ¬a) \longrightarrow unsatisfiable

- The original NP-complete problem.
 "As hard as any other problem in NP."
- S. Cook, The complexity of theorem proving procedures, STOC 1971.

Method

Spanning tree of ancestry graph

Consider simple case:

- F is precise
- ▶ No repeated columns (*G_F* is a DAG)

Variables:

- ▶ r_p : $r_p = 1$ iff p is the root.
- $e_{p,q}$: $e_{p,q} = 1$ iff p is the parent of q.

Restrictions:

- only one of r_p for all $p \in [n]$ is true.
- ▶ for all $p \in [n]$, only one of $e_{q,p} \forall q \in [n]$ and r_p is true.

Clauses for restriction "only one of $v_1, ..., v_n$ is true":

$$\bigvee_{p \in [n]} v_p$$

$$\neg v_p \lor \neg v_q, \text{ for all } p \neq q$$

Method

Sum Condition

- Discretize the frequencies (multiply by $(2^N 1)$).
- Represent the integers with a vector of binary vriables.

We need to represent addition and comparison in CNF form (clauses).

Method

 $full_adder(a, b, last_c, r, c)$

Comparison

leq(a,b): check the carry of $\sim a + b + 1$.

More complicated case: given F^- and F^+ instead of a single F. Approach

- Cycle prevention: depth(p) = depth(q) + 1 if $e_{q,p} = 1$.
- ► *F* is not determined: use the minimum frequency possible.

Result

Figure 4: Out method samples uniformly: (a) the same simulated instance (m=1, n=7, 297 solution trees); (b) the ranged version of PPM of CRUK0062 (90% confidence interval, m=7, n=15, 160 solutions)

Outline

- 1. Background and theory: [RECOMB-CG 2018]
- Perfect Phylogeny Mixture (PPM) problem
- #PPM: exact counting and uniform sampling

2. Simulation results: [RECOMB-CG 2018]

- What contributes to non-uniqueness?
- How to reduce non-uniqueness?
- How does non-uniqueness affect current methods?

3. Almost uniform sampling: [To be submitted]

• Reducing PPM to SATISFIABILITY

4. Summarizing solution space: [ISMB/ECCB 2019]

Multiple consensus tree problem

5. Applications

- Visualizing spatial clonal architecture of tumors: [To be submitted]
- Mutational signature dynamics [PSB 2020]

Nuraini Aguse

Yuanyuan Qi

Lung Cancer Patient: CRUK0037

Jamal-Hanjani et al. (2017). New England Journal of Medicine, 376(22), 2109–2121.

Authors inferred 17 trees

Lung Cancer Patient: CRUK0037

Jamal-Hanjani et al. (2017). New England Journal of Medicine, 376(22), 2109–2121.

Authors inferred 17 trees

Question: How to summarize solution space in order to remove inference errors and identify dependencies among mutations?

Parent-child Graph: Union of all Edges

Parent-child Graph: Union of all Edges

The parent-child graph does capture patterns of mutual exclusivity

Parent-child Graph: Union of all Edges

The parent-child graph does capture patterns of mutual exclusivity

Question: Can we infer a single consensus tree?

Single Consensus Tree: Max Weight Spanning Tree

Single Consensus Tree: Max Weight Spanning Tree

Inaccurate summary for diverse solution spaces

Question: How about inferring multiple consensus trees?

Multiple Consensus Trees

Simultaneous clustering and consensus tree inference

Multiple Consensus Trees (MCT): [ISMB 2019] Given trees $\mathcal{T} = \{T_1, \dots, T_n\}$, find surjective clustering $\sigma : [n] \rightarrow [k]$ and consensus trees $\mathcal{R} = \{R_1, \dots, R_k\}$ such that $\sum_{i=1}^n d(T_i, R_{\sigma(i)})$ is minimum

Multiple Consensus Trees

Simultaneous clustering and consensus tree inference

Multiple Consensus Trees (MCT): [ISMB 2019] Given trees $\mathcal{T} = \{T_1, \dots, T_n\}$, find surjective clustering $\sigma : [n] \rightarrow [k]$ and consensus trees $\mathcal{R} = \{R_1, \dots, R_k\}$ such that $\sum_{i=1}^n d(T_i, R_{\sigma(i)})$ is minimum

Parent-child Distance Function

 T_2

Parent-child Distance Function

Parent-child Distance Function

Parent-child distance $d(T_1, T_2)$ is the size of the symmetric difference of the edge sets

Here,
$$d(T_1, T_2) = |E(T_1) \setminus E(T_2)| + |E(T_2) \setminus E(T_1)| = 4.$$

Single Consensus Trees (SCT):

[Govek et al., ACM-BCB 2018] Given $\mathcal{T} = \{T_1, ..., T_n\}$, find consensus tree Rs.t. $\sum_{i=1}^n d(T_i, R)$ is minimum

Solution Space ${\mathcal T}$

Single Consensus Trees (SCT):

[Govek et al., ACM-BCB 2018] Given $\mathcal{T} = \{T_1, ..., T_n\}$, find consensus tree Rs.t. $\sum_{i=1}^n d(T_i, R)$ is minimum

Theorem: [Govek et al., ACM-BCB 2018] Max weight spanning arborescences of parent-child graph G_T are solutions to SCT

Single Consensus Trees (SCT):

[Govek et al., ACM-BCB 2018] Given $\mathcal{T} = \{T_1, ..., T_n\}$, find consensus tree Rs.t. $\sum_{i=1}^n d(T_i, R)$ is minimum

Theorem: [Govek et al., ACM-BCB 2018] Max weight spanning arborescences of parent-child graph G_T are solutions to SCT

Multiple Consensus Trees (MCT):

[Aguse et al., ISMB 2019] Given $\mathcal{T} = \{T_1, ..., T_n\}$ and k > 0, find surjective clustering $\sigma : [n] \rightarrow [k]$ and consensus trees $\mathcal{R} = \{R_1, ..., R_k\}$ s.t. $\sum_{i=1}^n d(T_i, R_{\sigma(i)})$ is minimum

Solution Space ${\mathcal T}$

Single Consensus Trees (SCT):

[Govek et al., ACM-BCB 2018] Given $\mathcal{T} = \{T_1, ..., T_n\}$, find consensus tree Rs.t. $\sum_{i=1}^n d(T_i, R)$ is minimum

Theorem: [Govek et al., ACM-BCB 2018] Max weight spanning arborescences of parent-child graph G_T are solutions to SCT

Multiple Consensus Trees (MCT):

[Aguse et al., ISMB 2019] Given $\mathcal{T} = \{T_1, ..., T_n\}$ and k > 0, find surjective clustering $\sigma : [n] \rightarrow [k]$ and consensus trees $\mathcal{R} = \{R_1, ..., R_k\}$ s.t. $\sum_{i=1}^n d(T_i, R_{\sigma(i)})$ is minimum

Proposition: [Aguse et al., ISMB 2019] Given fixed clustering $\sigma : [n] \rightarrow [k]$, MCT decomposes into k independent SCT instances

Single Consensus Trees (SCT):

[Govek et al., ACM-BCB 2018] Given $\mathcal{T} = \{T_1, ..., T_n\}$, find consensus tree Rs.t. $\sum_{i=1}^n d(T_i, R)$ is minimum

Theorem: [Govek et al., ACM-BCB 2018] Max weight spanning arborescences of parent-child graph G_T are solutions to SCT

Multiple Consensus Trees (MCT):

[Aguse et al., ISMB 2019] Given $\mathcal{T} = \{T_1, ..., T_n\}$ and k > 0, find surjective clustering $\sigma : [n] \rightarrow [k]$ and consensus trees $\mathcal{R} = \{R_{\pm}, ..., R_{k}\}$ s.t. $\sum_{i=1}^{n} d(T_i, R_{\sigma(i)})$ is minimum where $R_{\sigma(i)}$ is max weight spanning arborescence of $G_{\mathcal{T}_{\sigma(i)}}$

Proposition: [Aguse et al., ISMB 2019] Given fixed clustering $\sigma : [n] \rightarrow [k]$, MCT decomposes into k independent SCT instances

73
Combinatorial Characterization of Solutions

Single Consensus Trees (SCT):

[Govek et al., ACM-BCB 2018] Given $\mathcal{T} = \{T_1, ..., T_n\}$, find consensus tree Rs.t. $\sum_{i=1}^n d(T_i, R)$ is minimum

Theorem: [Govek et al., ACM-BCB 2018] Max weight spanning arborescences of parent-child graph G_T are solutions to SCT

Multiple Consensus Trees (MCT):

[Aguse et al., ISMB 2019] Given $\mathcal{T} = \{T_1, ..., T_n\}$ and k > 0, find surjective clustering $\sigma : [n] \rightarrow [k]$ and consensus trees $\mathcal{R} = \{R_{\pm}, ..., R_{k}\}$ s.t. $\sum_{i=1}^{n} d(T_i, R_{\sigma(i)})$ is minimum where $R_{\sigma(i)}$ is max weight spanning arborescence of $G_{\mathcal{T}_{\sigma(i)}}$

Proposition: [Aguse et al., ISMB 2019] Given fixed clustering $\sigma : [n] \rightarrow [k]$, MCT decomposes into k independent SCT instances

Question: How to find σ^* ?

Complexity

Multiple Consensus Trees (MCT):

Given $\mathcal{T} = \{T_1, ..., T_n\}$ and k > 0, find surjective clustering $\sigma : [n] \rightarrow [k]$ s.t. $\sum_{i=1}^n d(T_i, R_{\sigma(i)})$ is minimum where $R_{\sigma(i)}$ is max weight spanning arborescence of $G_{\mathcal{T}_{\sigma(i)}}$

Theorem: MCT is NP-hard for general k (by reduction from CLIQUE).

Alternating optimization heuristic

Heuristic finds optimal solutions efficiently

	#clusters k	MILP (1 h)	CA (100 r.)
()	2	16	16
(1	3	16	16
lall	4	16	16
sn	5	16	16
(5)	2	15	15
n (J	3	13	13
iun	4	12	12
ned	5	10	10
4)n	2	3	3
(1	3	0	0
.ge	4	0	0
laı	5	0	0

Small, medium, and large simulated instances

Number of instances solved by MILP to provable optimality

Heuristic finds optimal solutions efficiently

		#clusters k	MILP (1 h)	CA (100 r.)
	(9	2	16	16
	(1)	3	16	16
	lla	4	16	16
	sn	5	16	16
	[5]	2	15	15
	u (]	3	13	13
	iun	4	12	12
	led	5	10	10
	4) n	2	3	3
	(12	3	0	0
	rge	4	0	0
	laı	5	0	0
		· · · · · · · · · · · · · · · · · · ·		

Number of instances where heuristic returned MILP's optimal solution

Small, medium, and large simulated instances

Heuristic finds optimal solutions efficiently

	#clusters k	MILP (1 h)	CA (100 r.)
()	2	16	16
(1	3	16	16
lla	4	16	16
SIT	5	16	16
[5]	2	15	15
n (]	3	13	13
iun	4	12	12
ned	5	10	10
4) n	2	3	3
(12	3	0	0
rge	4	0	0
laı	5	0	0

Small, medium, and large simulated instances

Number of instances where heuristic returned MILP's optimal solution

Question: How to determine *k*?

Bayesian Information Criterion determines the number of clusters for each solution space

Jamal-Hanjani et al. (2017). NEJM.

Jamal-Hanjani et al. inferred 8 trees for patient CRUK0013

Bayesian Information Criterion determines the number of clusters for each solution space

Jamal-Hanjani et al. (2017). NEJM.

Jamal-Hanjani et al. inferred 17 trees for patient CRUK0037

Multiple Consensus Trees capture patterns of mutual exclusivity and co-occurrence

Multiple Consensus Trees capture patterns of mutual exclusivity and co-occurrence

These edges tend to cooccur in the trees in the solution space

Multiple Consensus Trees (MCT): [ISMB 2019] Given trees $\mathcal{T} = \{T_1, \dots, T_n\}$, find surjective clustering $\sigma : [n] \rightarrow [k]$ and consensus trees $\mathcal{R} = \{R_1, \dots, R_k\}$ such that $\sum_{i=1}^n d(T_i, R_{\sigma(i)})$ is minimum

- Characterize combinatorial structure of optimal solutions
- Show that MCT is NP-hard for general k
- Introduce a heuristic that returns optimal solution in most cases
- Model selection for k

Outline

- 1. Background and theory: [RECOMB-CG 2018]
- Perfect Phylogeny Mixture (PPM) problem
- #PPM: exact counting and uniform sampling

2. Simulation results: [RECOMB-CG 2018]

- What contributes to non-uniqueness?
- How to reduce non-uniqueness?
- How does non-uniqueness affect current methods?

3. Almost uniform sampling: [To be submitted]

• Reducing PPM to SATISFIABILITY

4. Summarizing solution space: [ISMB/ECCB 2019]

• Multiple consensus tree problem

5. Applications

Mutational signature dynamics [PSB 2020]

Sarah Christensen

Mutational Signatures

Mutational Signatures – NMF

Alexandrov et al. [Nature, 2013] performed nonnegative matrix factorization on a large patient cohort (n = 10,000) identifying r = 30 signatures and exposures

Mutational Signatures

Alexandrov et al. [Nature, 2013] performed nonnegative matrix factorization on a large patient cohort (n = 10,000) identifying r = 30 signatures and exposures

Clone-specific exposure inference problems

Tree-constrained exposure (TE) inference

Tree-constrained exposure inference

TE problem: [Christensen, Leiserson and El-Kebir, PSB 2020]: Given phylogenetic tree *T* and feature matrix *P*, find a small number of exposure shifts along edges of *T*

PhySigs solves the TE problem to optimality

TE problem:

Given feature matrix *P*, corresponding count matrix *C*, signature matrix *S*, phylogenetic tree *T* and integer $k \ge 1$, find relative exposure matrix D such that $||P - SDC||_F$ is minimum and *D* is composed of *k* sets of identical columns, each corresponding to a connected subtree of *T*.

PhySigs identifies accurate exposures without overfitting in a lung cancer cohort

PhySigs identifies an exposure shift supported by a subclonal driver

Fig. 5. PhySigs detects a large increase in DNA mismatch repair-associated Signature 6 (orange) along one branch (clusters 2 and 3; green) of the CRUK 0064 tree. In support of this finding, the branch includes a subclonal driver mutation to DNA mismatch repair gene *MLH1*.

PhySigs enables prioritization of trees in solution space

(a)

Tree-constrained exposure (TE) inference

TE problem: [Christensen, Leiserson and El-Kebir, PSB 2020]: Given phylogenetic tree *T* and feature matrix *P*, find *k* exposure shifts along edges of *T*

Tree-constrained exposure inference

- <u>Key idea</u>: exposure may change along edges of phylogenetic tree
- TE interpolates between single exposure (SE) and independent exposure (IE) problems
- Model selection for k

Conclusion

Downstream analyses in cancer genomics **critically rely** on accurate tumor phylogeny inference

Conclusion

Downstream analyses in cancer genomics **critically rely** on accurate tumor phylogeny inference

1. Theory and background of perfect phylogeny mixture (PPM) problem 2. Simulation study to assess factors contributing to and impact of non-uniqueness 3. Almost uniform sampling of solutions to PPM 4. Summarizing solution space using multiple consensus trees 5. Example of downstream application: Mutational signature dynamics

Acknowledgments

El-Kebir group

- Yuanyuan Qi
- Nuraini Aguse
- Sarah Christensen
- Dikshant Pradhan
- Jiaqi Wu
- Juho Kim
- Yerong Li
- Chuanyi Zhang
- Experiments were run on NCSA's Blue Waters supercomputer
- This work was supported by:
 - UIUC Center for Computational Biotechnology and Genomic Medicine (grant: CSN 1624790)
 - National Science Foundation (CCF 18-50502)

 $0/6/6 \ (p = 0.04)$

 $0/3/3 \ (p = 0.55)$

 $0/6/6 \ (p = 0.93)$

 $0/3/3 \ (p = 0.70)$

 $0/6/6 \ (p = 0.59)$

 $0/6/6 \ (p = 0.17)$

100

m = 10

Somatic Mutations Occur at Different Genomic Scales

101