

## Summarizing the Solution Space in Tumor Phylogeny Inference by Multiple Consensus Trees

Nuraini Aguse<sup>\*</sup>, Yuanyuan Qi<sup>\*</sup> and Mohammed El-Kebir University of Illinois at Urbana Champaign, Department of Computer Science

\*Joint first authorship

## Outline

- Introduction to tumor phylogenies
- Previous work
- Multiple Consensus Trees problem
- Methods
  - MILP
  - Heuristic
  - Bayesian Information Criterion



## Introduction to tumor phylogenies

## Cancer results from an evolutionary process



# Tumor progression can be represented as a phylogenetic tree





Phylogenetic tree

# Tumor progression can be represented as a phylogenetic tree





Phylogenetic tree

Tumor progression can be represented as a phylogenetic tree (or mutation tree)



1-1

Infinite Sites Assumption (ISA) states that a mutation is gained only once and never subsequently lost

Under ISA, a phylogenetic tree can be represented as a mutation tree

Phylogenetic tree

Mutation tree

# Phylogenies enable us to understand and treat cancer



# Phylogenies enable us to understand and treat cancer





- Bulk sequencing provides us frequencies of mutations as VAF
- Single-cell sequencing has a high false positive and false negative rate
- Both contribute to non-uniqueness of tumor phylogeny inference





- Bulk sequencing provides us frequencies of mutations as VAF
- Single-cell sequencing has a high false positive and false negative rate
- Both contribute to non-uniqueness of tumor phylogeny inference



Downstream analyses rely on accurate phylogeny inference



We need to summarize the solution space to

- Reduce inference errors
- Identify dependencies among mutations





We need to summarize the solution space to

- Reduce inference errors
- Identify dependencies among mutations

How do we best summarize the solution space?



## Previous work

# Solution space of lung cancer patient CRUK0037

Jamal-Hanjani et al. (2017). New England Journal of Medicine, 376(22), 2109–2121.

Jamal-Hanjani et al. inferred 17 trees for patient CRUK0037



# Solution space of lung cancer patient CRUK0037

Jamal-Hanjani et al. (2017). New England Journal of Medicine, 376(22), 2109–2121.

Jamal-Hanjani et al. inferred 17 trees for patient CRUK0037



Two summary methods in previous work: Parent-child graph & single consensus tree





|                       | $v_1 \rightarrow v_{10}$ | $v_4 \rightarrow v_{10}$ |
|-----------------------|--------------------------|--------------------------|
| $v_1 \rightarrow v_7$ | 2                        | 0                        |
| $v_4 \rightarrow v_7$ | 2                        | 5                        |



|                       | $v_1 \rightarrow v_{10}$ | $v_4 \rightarrow v_{10}$ |
|-----------------------|--------------------------|--------------------------|
| $v_1 \rightarrow v_7$ | 2                        |                          |
| $v_4 \rightarrow v_7$ | 2                        | 5                        |



|                       | $v_1 \rightarrow v_{10}$ | $v_4 \rightarrow v_{10}$ |
|-----------------------|--------------------------|--------------------------|
| $v_1 \rightarrow v_7$ | 2                        |                          |
| $v_4 \rightarrow v_7$ | 2                        | 5                        |

Patterns of <u>mutual exclusivity</u> are not captured in parent-child graph

## Summarizing the solution space using a single consensus tree



|                       | $v_1 \rightarrow v_{10}$ | $v_4 \rightarrow v_{10}$ |
|-----------------------|--------------------------|--------------------------|
| $v_1 \rightarrow v_7$ | 2                        | 0                        |
| $v_4 \rightarrow v_7$ | 2                        | 5                        |

## Summarizing the solution space using a single consensus tree



|                       | $v_1 \rightarrow v_{10}$ | $v_4 \rightarrow v_{10}$ |
|-----------------------|--------------------------|--------------------------|
| $v_1 \rightarrow v_7$ | 2                        | 0                        |
| $v_4 \rightarrow v_7$ | 2                        | 5                        |

## Summarizing the solution space using a single consensus tree



|                       | $v_1 \rightarrow v_{10}$ | $v_4 \rightarrow v_{10}$ |
|-----------------------|--------------------------|--------------------------|
| $v_1 \rightarrow v_7$ | 2                        | 0                        |
| $v_4 \rightarrow v_7$ | 2                        | 5                        |

Single consensus tree results in inaccurate summary of diverse solution spaces

## Multiple Consensus Trees problem

## Multiple Consensus Trees problem

Simultaneous clustering and consensus tree inference



**Multiple Consensus Trees (MCT):** [ISMB/ECCB 2019] Given trees  $\mathcal{T} = \{T_1, ..., T_n\}$  and k > 0, find surjective clustering  $\sigma : [n] \rightarrow [k]$ and consensus trees  $\mathcal{R} = \{R_1, ..., R_k\}$  s.t.  $\sum_{i=1}^n d(T_i, R_{\sigma(i)})$  is minimum<sup>5</sup>

Single Consensus Trees (SCT): [Govek et al., ACM-BCB 2018] Given  $\mathcal{T} = \{T_1, ..., T_n\}$ , find consensus tree R s.t.  $\sum_{i=1}^n d(T_i, R)$  is minimum



Solution Space  ${\mathcal T}$ 





Solution Space  ${\mathcal T}$ 

Parent-Child distance

Single Consensus Trees (SCT): [Govek et al., ACM-BCB 2018] Given  $\mathcal{T} = \{T_1, ..., T_n\}$ , find consensus tree R s.t.  $\sum_{i=1}^n d(T_i, R)$  is minimum

> **Theorem:** [Govek et al., ACM-BCB 2018] Max weight spanning arborescences of parent-child graph  $G_T$  are solutions to SCT



#### Solution Space ${\mathcal T}$

Single Consensus Trees (SCT): [Govek et al., ACM-BCB 2018] Given  $\mathcal{T} = \{T_1, ..., T_n\}$ , find consensus tree R s.t.  $\sum_{i=1}^n d(T_i, R)$  is minimum

> **Theorem:** [Govek et al., ACM-BCB 2018] Max weight spanning arborescences of parent-child graph  $G_T$  are solutions to SCT





Single Consensus Trees (SCT): [Govek et al., ACM-BCB 2018] Given  $\mathcal{T} = \{T_1, ..., T_n\}$ , find consensus tree R s.t.  $\sum_{i=1}^n d(T_i, R)$  is minimum

> **Theorem:** [Govek et al., ACM-BCB 2018] Max weight spanning arborescences of parent-child graph  $G_T$  are solutions to SCT

**Multiple Consensus Trees (MCT):** [Aguse et al., ISMB 2019] Given  $\mathcal{T} = \{T_1, \dots, T_n\}$  and k > 0, find surjective clustering  $\sigma : [n] \rightarrow [k]$  and consensus trees  $\mathcal{R} = \{R_1, \dots, R_k\}$ s.t.  $\sum_{i=1}^n d(T_i, R_{\sigma(i)})$  is minimum



Solution Space  ${\mathcal T}$ 

Single Consensus Trees (SCT): [Govek et al., ACM-BCB 2018] Given  $\mathcal{T} = \{T_1, ..., T_n\}$ , find consensus tree R s.t.  $\sum_{i=1}^n d(T_i, R)$  is minimum

> **Theorem:** [Govek et al., ACM-BCB 2018] Max weight spanning arborescences of parent-child graph  $G_T$  are solutions to SCT

**Multiple Consensus Trees (MCT):** [Aguse et al., ISMB 2019] Given  $\mathcal{T} = \{T_1, \dots, T_n\}$  and k > 0, find surjective clustering  $\sigma : [n] \rightarrow [k]$  and consensus trees  $\mathcal{R} = \{R_1, \dots, R_k\}$ s.t.  $\sum_{i=1}^n d(T_i, R_{\sigma(i)})$  is minimum

**Proposition:** [Aguse et al., ISMB 2019] Given fixed clustering  $\sigma : [n] \rightarrow [k]$ , MCT decomposes into k independent SCT instances



#### Solution Space ${\mathcal T}$

Single Consensus Trees (SCT): [Govek et al., ACM-BCB 2018] Given  $\mathcal{T} = \{T_1, ..., T_n\}$ , find consensus tree R s.t.  $\sum_{i=1}^n d(T_i, R)$  is minimum

> **Theorem:** [Govek et al., ACM-BCB 2018] Max weight spanning arborescences of parent-child graph  $G_T$  are solutions to SCT

**Multiple Consensus Trees (MCT):** [Aguse et al., ISMB 2019] Given  $\mathcal{T} = \{T_1, ..., T_n\}$  and k > 0, find surjective clustering  $\sigma : [n] \rightarrow [k]$  and consensus trees  $\mathcal{R} = \{R_1, ..., R_k\}$ s.t.  $\sum_{i=1}^n d(T_i, R_{\sigma(i)})$  is minimum where  $R_{\sigma(i)}$  is max weight spanning arborescence of  $G_{\mathcal{T}_{\sigma(i)}}$ 

**Proposition:** [Aguse et al., ISMB 2019] Given fixed clustering  $\sigma : [n] \rightarrow [k]$ , MCT decomposes into k independent SCT instances



#### Solution Space ${\mathcal T}$

Single Consensus Trees (SCT): [Govek et al., ACM-BCB 2018] Given  $\mathcal{T} = \{T_1, ..., T_n\}$ , find consensus tree R s.t.  $\sum_{i=1}^n d(T_i, R)$  is minimum

> **Theorem:** [Govek et al., ACM-BCB 2018] Max weight spanning arborescences of parent-child graph  $G_T$  are solutions to SCT

**Multiple Consensus Trees (MCT):** [Aguse et al., ISMB 2019] Given  $\mathcal{T} = \{T_1, ..., T_n\}$  and k > 0, find surjective clustering  $\sigma : [n] \rightarrow [k]$  and consensus trees  $\mathcal{R} = \{R_{\pm}, ..., R_k\}$ s.t.  $\sum_{i=1}^n d(T_i, R_{\sigma(i)})$  is minimum where  $R_{\sigma(i)}$  is max weight spanning arborescence of  $G_{\mathcal{T}_{\sigma(i)}}$ 

**Proposition:** [Aguse et al., ISMB 2019] Given fixed clustering  $\sigma : [n] \rightarrow [k]$ , MCT decomposes into k independent SCT instances



Single Consensus Trees (SCT): [Govek et al., ACM-BCB 2018] Given  $\mathcal{T} = \{T_1, ..., T_n\}$ , find consensus tree R s.t.  $\sum_{i=1}^n d(T_i, R)$  is minimum

> **Theorem:** [Govek et al., ACM-BCB 2018] Max weight spanning arborescences of parent-child graph  $G_T$  are solutions to SCT

**Multiple Consensus Trees (MCT):** [Aguse et al., ISMB 2019] Given  $\mathcal{T} = \{T_1, ..., T_n\}$  and k > 0, find surjective clustering  $\sigma : [n] \rightarrow [k]$  and consensus trees  $\mathcal{R} = \{R_{\pm}, ..., R_k\}$ s.t.  $\sum_{i=1}^n d(T_i, R_{\sigma(i)})$  is minimum where  $R_{\sigma(i)}$  is max weight spanning arborescence of  $G_{\mathcal{T}_{\sigma(i)}}$ 

**Proposition:** [Aguse et al., ISMB 2019] Given fixed clustering  $\sigma : [n] \rightarrow [k]$ , MCT decomposes into k independent SCT instances



## Methods and results

## Mixed Integer Linear Program

**Theorem:** MCT is NP-hard for general k (by reduction from CLIQUE).

$$\begin{split} \min n(m-1) &- \sum_{i=1}^{n} \sum_{s=1}^{k} \sum_{p=1}^{m} \sum_{q=1}^{m} w_{i,s,p,q} \\ \text{s.t.} \quad \sum_{s=1}^{k} x_{i,s} &= 1 & \forall i \in [n] \\ &\sum_{i=1}^{n} x_{i,s} \geq 1 & \forall s \in [k] \\ &\sum_{p=1}^{m} z_{s,p} = 1 & \forall s \in [k] \\ &\sum_{q=1}^{m} y_{s,p,q} = 1 - z_{s,p} & \forall s \in [k], p \in [m] \\ &y_{s,p,q} \leq b_{p,q} & \forall s \in [k], p \in [m] \\ &\sum_{(p,q) \in \delta^{-}(U)} y_{s,p,q} + \sum_{p \in U} z_{s,p} \geq 1 & \forall s \in [k], U \subseteq [m] \\ &w_{i,s,p,q} \leq a_{i,p,q} & \forall i \in [n], s \in [k], p, q \in [m] \\ &w_{i,s,p,q} \leq x_{i,s} & \forall i \in [n], s \in [k], p, q \in [m] \\ &w_{i,s,p,q} \leq y_{s,p,q} & \forall i \in [n], s \in [k], p, q \in [m] \\ &w_{i,s,p,q} \geq 0 & \forall i \in [n], s \in [k], p, q \in [m] \\ &w_{i,s,p,q} \leq \sum_{i=1}^{n} a_{i,p,q} x_{i,s} & \forall s \in [k], p, q \in [m] \\ &y_{s,p,q} \leq \sum_{i=1}^{n} a_{i,p,q} x_{i,s} & \forall s \in [k], p, q \in [m] \\ &y_{s,p,q} \leq \sum_{i=1}^{n} a_{i,p,q} x_{i,s} & \forall s \in [k], p, q \in [m] \\ &y_{s,p,q} \leq \sum_{i=1}^{n} a_{i,p,q} x_{i,s} & \forall s \in [k], p, q \in [m] \\ &y_{s,p,q} \leq \sum_{i=1}^{n} a_{i,p,q} x_{i,s} & \forall s \in [k], p, q \in [m] \\ &y_{s,p,q} \leq \sum_{i=1}^{n} a_{i,p,q} x_{i,s} & \forall s \in [k], p, q \in [m] \\ &y_{s,p,q} \leq \sum_{i=1}^{n} a_{i,p,q} x_{i,s} & \forall s \in [k], p, q \in [m] \\ &y_{s,p,q} \leq \sum_{i=1}^{n} a_{i,p,q} x_{i,s} & \forall s \in [k], p, q \in [m] \\ &y_{s,p,q} \leq \sum_{i=1}^{n} a_{i,p,q} x_{i,s} & \forall s \in [k], p, q \in [m] \\ &y_{s,p,q} \leq \sum_{i=1}^{n} a_{i,p,q} x_{i,s} & \forall s \in [k], p, q \in [m] \\ &y_{s,p,q} \leq \sum_{i=1}^{n} a_{i,p,q} x_{i,s} & \forall s \in [k], p, q \in [m] \\ &y_{s,p,q} \leq \sum_{i=1}^{n} a_{i,p,q} x_{i,s} & \forall s \in [k], p, q \in [m] \\ &y_{s,p,q} \leq \sum_{i=1}^{n} a_{i,p,q} x_{i,s} & \forall s \in [k], p, q \in [m] \\ &y_{s,p,q} \leq \sum_{i=1}^{n} a_{i,p,q} x_{i,s} & \forall s \in [k], p, q \in [m] \\ &y_{s,p,q} \leq \sum_{i=1}^{n} a_{i,p,q} x_{i,s} & \forall s \in [k], p, q \in [m] \\ &y_{s,p,q} \leq \sum_{i=1}^{n} a_{i,p,q} x_{i,s} & \forall s \in [k], p, q \in [m] \\ &y_{s,p,q} \leq \sum_{i=1}^{n} a_{i,p,q} x_{i,s} & \forall s \in [k], p, q \in [m] \\ &y_{s,p,q} \leq \sum_{i=1}^{n} a_{i,p,q} x_{i,s} & \forall s \in [k], p, q \in [m] \\ &y_{s,p,q} \leq \sum_{i=1}^{n} a_{i,p,q} x_{i,s} & \forall s \in [k], p, q \in [m] \\ &y_{s,p,q} \leq \sum_{i=1}^{n} a_{i,p,q} x_{i,s} & \forall s \in [k], p, q \in [m] \\ &y_{s,p,q} \leq \sum_{i=1}^{n} a_{i,p,q} x_{i,s} & \forall$$

s.t.

$$\forall s \in [k], p, q \in [m]$$

$$\sum_{i=1}^{n} x_{i,s} \ge \sum_{i=1}^{n} x_{i,s+1} + 1 \qquad \forall s \in [k-1]$$
$$x_{i,s} \in \{0,1\} \qquad \forall i \in [n], s \in [k]$$

 $y_{s,p,q} \ge \sum_{i=1}^{n} a_{i,p,q} x_{i,s} - \sum_{i=1}^{n} x_{i,s} + 1$ 

 $y_{s,p,q} \ge 0$  $z_{s,p} \ge 0$ 

$$\forall s \in [k], p, q \in [m]$$
  
$$\forall s \in [k], p \in [m]$$

## Mixed Integer Linear Program

**Theorem:** MCT is NP-hard for general k (by reduction from CLIQUE).

 $egin{aligned} x_{i,s} \in \{0,1\} & ext{Tree } T_i ext{ is assigned to cluster } s \ y_{s,p,q} \geq 0 & ext{Edge } (p,q) ext{ is present in consensus tree } R_s \ z_{s,p} \geq 0 & ext{Vertex } p ext{ is root of consensus tree } R_s \end{aligned}$ 

$$\begin{aligned} \min n(m-1) &- \sum_{i=1}^{n} \sum_{s=1}^{k} \sum_{p=1}^{m} \sum_{q=1}^{m} w_{i,s,p,q} \\ \text{s.t.} \quad \sum_{s=1}^{k} x_{i,s} &= 1 & \forall i \in [n] \\ \sum_{i=1}^{n} x_{i,s} &\geq 1 & \forall s \in [k] \\ \sum_{i=1}^{m} x_{i,s} &\geq 1 & \forall s \in [k] \\ \sum_{q=1}^{m} z_{s,p} &= 1 - z_{s,p} & \forall s \in [k], p \in [m] \\ y_{s,p,q} &\leq b_{p,q} & \forall s \in [k], p, q \in [m] \\ \sum_{(p,q) \in \delta^{-}(U)} y_{s,p,q} + \sum_{p \in U} z_{s,p} &\geq 1 & \forall s \in [k], U \subseteq [m] \\ w_{i,s,p,q} &\leq a_{i,p,q} & \forall i \in [n], s \in [k], p, q \in [m] \\ w_{i,s,p,q} &\leq x_{i,s} & \forall i \in [n], s \in [k], p, q \in [m] \\ w_{i,s,p,q} &\leq x_{i,s} & \forall i \in [n], s \in [k], p, q \in [m] \\ w_{i,s,p,q} &\leq y_{s,p,q} & \forall i \in [n], s \in [k], p, q \in [m] \\ w_{i,s,p,q} &\geq 0 & \forall i \in [n], s \in [k], p, q \in [m] \\ y_{s,p,q} &\leq \sum_{i=1}^{n} a_{i,p,q} x_{i,s} & \forall s \in [k], p, q \in [m] \\ y_{s,p,q} &\geq \sum_{i=1}^{n} a_{i,p,q} x_{i,s} - \sum_{i=1}^{n} x_{i,s} + 1 & \forall s \in [k], p, q \in [m] \\ \sum_{i=1}^{n} x_{i,s} &\geq \sum_{i=1}^{n} x_{i,s+1} + 1 & \forall s \in [k], p, q \in [m] \\ x_{i,s} &\in \{0,1\} & \forall i \in [n], s \in [k], p, q \in [m] \\ y_{s,p,q} &\geq 0 & \forall s \in [k], p, q \in [m] \end{aligned}$$

 $\forall s \in [k], p \in [m]$ 

## MILP does not scale well with k and n

50

small medium large 40 40 30 30 11 40 11 40 11 40 11 40 11 10 40 11 10 40 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 0 2 3 1 4 5 #clusters k

We simulated **small**, **medium** and **large** instances of phylogeny inference solution spaces

## Coordinate Ascent heuristic



# Coordinate Ascent heuristic finds optimal solutions efficiently

|      | #clusters k | MILP (1 h) | CA (100 r.) |
|------|-------------|------------|-------------|
| ()   | 2           | 16         | 16          |
| (1   | 3           | 16         | 16          |
| lla  | 4           | 16         | 16          |
| SIT  | 5           | 16         | 16          |
| (5)  | 2           | 15         | 15          |
| n (] | 3           | 13         | 13          |
| iun  | 4           | 12         | 12          |
| led  | 5           | 10         | 10          |
| 4)n  | 2           | 3          | 3           |
| (1   | 3           | 0          | 0           |
| rge  | 4           | 0          | 0           |
| laı  | 5           | 0          | 0           |
|      |             |            | -           |

Small, medium, and large simulated instances

Number of instances solved by MILP to provable optimality

# Coordinate Ascent heuristic finds optimal solutions efficiently

|         | #clusters k | MILP (1 h) | CA (100 r.) |
|---------|-------------|------------|-------------|
| (9      | 2           | 16         | 16          |
| (1)     | 3           | 16         | 16          |
| lla     | 4           | 16         | 16          |
| sn      | 5           | 16         | 16          |
| [5]     | 2           | 15         | 15          |
| u (]    | 3           | 13         | 13          |
| iun     | 4           | 12         | 12          |
| led     | 5           | 10         | 10          |
| 4) n    | 2           | 3          | 3           |
| $(1^7)$ | 3           | 0          | 0           |
| rge     | 4           | 0          | 0           |
| laı     | 5           | 0          | 0           |
|         |             |            |             |

Small, medium, and large simulated instances

Number of instances where heuristic returned MILP's optimal solution

# Coordinate Ascent heuristic finds optimal solutions efficiently

|      | #clusters k | MILP (1 h) | CA (100 r.) |
|------|-------------|------------|-------------|
| 6)   | 2           | 16         | 16          |
| (1   | 3           | 16         | 16          |
| lla  | 4           | 16         | 16          |
| SIT  | 5           | 16         | 16          |
| 15)  | 2           | 15         | 15          |
| n (] | 3           | 13         | 13          |
| iun  | 4           | 12         | 12          |
| ned  | 5           | 10         | 10          |
| 4)n  | 2           | 3          | 3           |
| (17  | 3           | 0          | 0           |
| rge  | 4           | 0          | 0           |
| laı  | 5           | 0          | 0           |

Small, medium, and large simulated instances

What about the number of clusters, k?

Bayesian Information Criterion determines the number of clusters for each solution space

Jamal-Hanjani et al. (2017). NEJM.

Jamal-Hanjani et al. inferred 8 trees for patient CRUK0013





Bayesian Information Criterion determines the number of clusters for each solution space

Jamal-Hanjani et al. (2017). NEJM.

Jamal-Hanjani et al. inferred 17 trees for patient CRUK0037





## Multiple Consensus Trees capture patterns of mutual exclusivity and co-occurrence



## Multiple Consensus Trees capture patterns of mutual exclusivity and co-occurrence



These edges tend to co-occur in the trees in the solution space





## Conclusions

- Introduced the Multiple Consensus Trees (MCT) problem
- Showed hardness and presented a mixed integer linear program
- Presented an efficient heuristic and showed that it finds optimal solutions
- Model selection for the number of clusters

## Future directions

- Relax infinite sites assumption
- Use alternative distance functions



#### CENTER FOR COMPUTATIONAL BIOTECHNOLOGY & GENOMIC MEDICINE

## Acknowledgements

- El-Kebir group
  - Mohammed El-Kebir
  - Yuanyuan Qi
  - Juho Kim
  - Jiaqi Wu
- ISCB for Travel Fellowship Award
- UIUC Center for Computational Biotechnology and Genomic Medicine (grant: CSN 1624790)
- National Science Foundation (CCF-1850502)

