Summarizing the Solution Space in Tumor Phylogeny Inference by Multiple Consensus Trees

Nuraini Aguse*, Yuanyuan Qi* and Mohammed El-Kebir University of Illinois at Urbana Champaign, Department of Computer Science

RECOMB-CCB 2019

*Joint first authorship Accepted at ISMB/ECCB 2019

Clonal Evolution Theory of Cancer

[Nowell, 1976]

Clonal Evolution Theory of Cancer [Nowell, 1976]

Clonal Evolution Theory of Cancer [Nowell, 1976]

Clonal Evolution Theory of Cancer [Nowell, 1976]

Question: Why are tumor phylogenies important?

Phylogenies are Key to Understanding and Treating Cancer

These downstream analyses critically rely on accurate tumor phylogeny inference

Phylogenies are Key to Understanding and Treating Cancer

These downstream analyses critically rely on accurate tumor phylogeny inference

Key challenge in phylogenetics:

Accurate phylogeny inference from data at present time

Additional Challenge in Cancer Phylogenetics

Phylogeny inference from mixtures of/incomplete measurements of leaves

Additional Challenge in Cancer Phylogenetics

Phylogeny inference from mixtures of/incomplete measurements of leaves

Non-uniqueness of solutions: alternative solutions with varying leaf sets

Additional Challenge in Cancer Phylogenetics

Phylogeny inference from mixtures of/incomplete measurements of leaves

Non-uniqueness of solutions: alternative solutions with varying leaf sets

10

Question: How to summarize solution space \mathcal{T} in order to remove inference errors and identify dependencies among mutations?

Outline

- Problem Statement
 - Previous work
 - Problem statement
 - Combinatorial characterization of solutions
 - Complexity
- Method & Results
 - Exact algorithm
 - Heuristic algorithm
 - Model selection

Phylogenetic Trees vs. Mutation Trees

Infinite sites assumption (ISA): each mutation is introduced once and never subsequently lost

Phylogenetic Trees vs. Mutation Trees

Infinite sites assumption (ISA): each mutation is introduced once and never subsequently lost

Under ISA, a phylogenetic tree may be equivalently* represented by a mutation tree

Solution Space of Lung Cancer Patient CRUK0037

Jamal-Hanjani et al. (2017). New England Journal of Medicine, 376(22), 2109–2121.

Jamal-Hanjani et al. inferred 17 trees for patient CRUK0037

Question: How to summarize solution space in order to remove inference errors and identify dependencies among mutations?

Parent-child Graph: Union of all Edges in ${\mathcal T}$

Parent-child Graph: Union of all Edges in ${\mathcal T}$

The parent-child graph does not capture patterns of mutual exclusivity

Parent-child Graph: Union of all Edges in ${\mathcal T}$

The parent-child graph does not capture patterns of mutual exclusivity

Question: Can we infer a single consensus tree?

Single Consensus Tree: Max Weight Spanning Tree

Single Consensus Tree: Max Weight Spanning Tree

Inaccurate summary for diverse solution spaces

Question: How about inferring multiple consensus trees?

Multiple Consensus Trees (MCT): [ISMB/ECCB 2019] Given trees $\mathcal{T} = \{T_1, ..., T_n\}$ and k > 0, find surjective clustering $\sigma : [n] \rightarrow [k]$ and consensus trees $\mathcal{R} = \{R_1, ..., R_k\}$ s.t. $\sum_{i=1}^n d(T_i, R_{\sigma(i)})$ is minimum

Multiple Consensus Trees (MCT): [ISMB/ECCB 2019] Given trees $\mathcal{T} = \{T_1, ..., T_n\}$ and k > 0, find surjective clustering $\sigma : [n] \rightarrow [k]$ and consensus trees $\mathcal{R} = \{R_1, ..., R_k\}$ s.t. $\sum_{i=1}^n d(T_i, R_{\sigma(i)})$ is minimum

Parent-child Distance Function

 T_1

 T_2

Parent-child Distance Function

Parent-child Distance Function

Parent-child distance $d(T_1, T_2)$ is the size of the symmetric difference of the edge sets

Here, $d(T_1, T_2) = |E(T_1) \setminus E(T_2)| + |E(T_2) \setminus E(T_1)| = 4.$

Single Consensus Trees (SCT): [Govek et al., ACM-BCB 2018] Given $\mathcal{T} = \{T_1, ..., T_n\}$, find consensus tree R s.t. $\sum_{i=1}^n d(T_i, R)$ is minimum

Solution Space ${\mathcal T}$

Single Consensus Trees (SCT): [Govek et al., ACM-BCB 2018] Given $\mathcal{T} = \{T_1, ..., T_n\}$, find consensus tree R s.t. $\sum_{i=1}^n d(T_i, R)$ is minimum

> **Theorem:** [Govek et al., ACM-BCB 2018] Max weight spanning arborescences of parent-child graph G_T are solutions to SCT

Single Consensus Trees (SCT): [Govek et al., ACM-BCB 2018] Given $\mathcal{T} = \{T_1, ..., T_n\}$, find consensus tree R s.t. $\sum_{i=1}^n d(T_i, R)$ is minimum

> **Theorem:** [Govek et al., ACM-BCB 2018] Max weight spanning arborescences of parent-child graph G_T are solutions to SCT

Multiple Consensus Trees (MCT): [Aguse et al., ISMB 2019] Given $\mathcal{T} = \{T_1, \dots, T_n\}$ and k > 0, find surjective clustering $\sigma : [n] \rightarrow [k]$ and consensus trees $\mathcal{R} = \{R_1, \dots, R_k\}$ s.t. $\sum_{i=1}^n d(T_i, R_{\sigma(i)})$ is minimum

Solution Space ${\mathcal T}$

Single Consensus Trees (SCT): [Govek et al., ACM-BCB 2018] Given $\mathcal{T} = \{T_1, ..., T_n\}$, find consensus tree R s.t. $\sum_{i=1}^n d(T_i, R)$ is minimum

> **Theorem:** [Govek et al., ACM-BCB 2018] Max weight spanning arborescences of parent-child graph G_T are solutions to SCT

Multiple Consensus Trees (MCT): [Aguse et al., ISMB 2019] Given $\mathcal{T} = \{T_1, \dots, T_n\}$ and k > 0, find surjective clustering $\sigma : [n] \rightarrow [k]$ and consensus trees $\mathcal{R} = \{R_1, \dots, R_k\}$ s.t. $\sum_{i=1}^n d(T_i, R_{\sigma(i)})$ is minimum

Proposition: [Aguse et al., ISMB 2019] Given fixed clustering $\sigma : [n] \rightarrow [k]$, MCT decomposes into k independent SCT instances

Solution Space ${\mathcal T}$

Single Consensus Trees (SCT): [Govek et al., ACM-BCB 2018] Given $\mathcal{T} = \{T_1, ..., T_n\}$, find consensus tree R s.t. $\sum_{i=1}^n d(T_i, R)$ is minimum

> **Theorem:** [Govek et al., ACM-BCB 2018] Max weight spanning arborescences of parent-child graph G_T are solutions to SCT

Multiple Consensus Trees (MCT): [Aguse et al., ISMB 2019] Given $\mathcal{T} = \{T_1, ..., T_n\}$ and k > 0, find surjective clustering $\sigma : [n] \rightarrow [k]$ and consensus trees $\mathcal{R} = \{R_{\pm}, ..., R_k\}$ s.t. $\sum_{i=1}^n d(T_i, R_{\sigma(i)})$ is minimum where $R_{\sigma(i)}$ is max weight spanning arborescence of $G_{\mathcal{T}_{\sigma(i)}}$

Proposition: [Aguse et al., ISMB 2019] Given fixed clustering $\sigma : [n] \rightarrow [k]$, MCT decomposes into k independent SCT instances

Single Consensus Trees (SCT): [Govek et al., ACM-BCB 2018] Given $\mathcal{T} = \{T_1, ..., T_n\}$, find consensus tree R s.t. $\sum_{i=1}^n d(T_i, R)$ is minimum

> **Theorem:** [Govek et al., ACM-BCB 2018] Max weight spanning arborescences of parent-child graph G_T are solutions to SCT

Multiple Consensus Trees (MCT): [Aguse et al., ISMB 2019] Given $\mathcal{T} = \{T_1, ..., T_n\}$ and k > 0, find surjective clustering $\sigma : [n] \rightarrow [k]$ and consensus trees $\mathcal{R} = \{R_{\pm}, ..., R_{k}\}$ s.t. $\sum_{i=1}^{n} d(T_i, R_{\sigma(i)})$ is minimum where $R_{\sigma(i)}$ is max weight spanning arborescence of $G_{\mathcal{T}_{\sigma(i)}}$

Proposition: [Aguse et al., ISMB 2019] Given fixed clustering $\sigma : [n] \rightarrow [k]$, MCT decomposes into k independent SCT instances

Question: How to find σ^* ?

Complexity

Multiple Consensus Trees (MCT):

Given $\mathcal{T} = \{T_1, \dots, T_n\}$ and k > 0, find surjective clustering $\sigma : [n] \to [k]$ s.t. $\sum_{i=1}^n d(T_i, R_{\sigma(i)})$ is minimum where $R_{\sigma(i)}$ is max weight spanning arborescence of $G_{\mathcal{T}_{\sigma(i)}}$

Theorem: MCT is NP-hard for general k (by reduction from CLIQUE).

Outline

- Problem Statement
 - Previous work
 - Problem statement
 - Combinatorial characterization of solutions
 - Complexity
- Method & Results
 - Exact algorithm
 - Heuristic algorithm
 - Model selection

Mixed Integer Linear Program

Theorem: MCT is NP-hard for general k (by reduction from CLIQUE).

$\min n(m-1) - \sum_{i=1}^{n} \sum_{s=1}^{k} \sum_{p=1}^{m} \sum_{q=1}^{m} w_{i,s,p}$	q,q
s.t. $\sum_{s=1}^{k} x_{i,s} = 1$	$\forall i \in [n]$
$\sum_{i=1}^{n} x_{i,s} \ge 1$	$\forall s \in [k]$
$\sum_{p=1}^{m} z_{s,p} = 1$	$\forall s \in [k]$
$\sum_{q=1}^m y_{s,p,q} = 1 - z_{s,p}$	$\forall s \in [k], p \in [m]$
$y_{s,p,q} \le b_{p,q}$	$\forall s \in [k], p,q \in [m]$
$\sum_{(p,q)\in\delta^{-}(U)} y_{s,p,q} + \sum_{p\in U} z_{s,p} \ge 1$	$\forall s \in [k], U \subseteq [m]$
$w_{i,s,p,q} \le a_{i,p,q}$	$\forall i \in [n], s \in [k], p, q \in [m]$
$w_{i,s,p,q} \le x_{i,s}$	$\forall i \in [n], s \in [k], p, q \in [m]$
$w_{i,s,p,q} \le y_{s,p,q}$	$\forall i \in [n], s \in [k], p, q \in [m]$
$w_{i,s,p,q} \ge 0$	$\forall i \in [n], s \in [k], p, q \in [m]$
$y_{s,p,q} \le \sum_{i=1}^{n} a_{i,p,q} x_{i,s}$	$\forall s \in [k], p,q \in [m]$
$y_{s,p,q} \ge \sum_{i=1}^{n} a_{i,p,q} x_{i,s} - \sum_{i=1}^{n} x_{i,s} +$	1 $\forall s \in [k], p, q \in [m]$
$\sum_{i=1}^{n} x_{i,s} \ge \sum_{i=1}^{n} x_{i,s+1} + 1$	$\forall s \in [k-1]$
$x_{i,s} \in \{0,1\}$	$\forall i \in [n], s \in [k]$
$y_{s,p,q} \ge 0$	$\forall s \in [k], p,q \in [m]$
$z_{s,p} \ge 0$	$\forall s \in [k], p \in [m]$

Mixed Integer Linear Program

Theorem: MCT is NP-hard for general k (by reduction from CLIQUE).

$x_{i,s} \in \{0,1\}$	Tree T_i is assigned to cluster s
$y_{s,p,q} \ge 0$	Edge (p,q) is present in consensus tree R_s
$z_{s,p} \ge 0$	Vertex p is root of consensus tree R_s

mi	$\ln n(m-1) - \sum_{i=1}^{n} \sum_{s=1}^{k} \sum_{p=1}^{m} \sum_{q=1}^{m} w_{i,s,p,s}$	q
s.1	t. $\sum_{s=1}^{k} x_{i,s} = 1$	$\forall i \in [n]$
	$\sum_{i=1}^{n} x_{i,s} \ge 1$	$\forall s \in [k]$
	$\sum_{p=1}^{m} z_{s,p} = 1$	$\forall s \in [k]$
	$\sum_{q=1}^{m} y_{s,p,q} = 1 - z_{s,p}$	$\forall s \in [k], p \in [m]$
	$y_{s,p,q} \le b_{p,q}$	$\forall s \in [k], p,q \in [m]$
	$\sum_{(n,p)\in S^{-}(U)} y_{s,p,q} + \sum_{r\in U} z_{s,p} \ge 1$	$\forall s \in [k], U \subseteq [m]$
	$(p,q) \in \delta^{-}(U)$ $p \in U$	$\forall i \in [n] \ s \in [k] \ n \ a \in [m]$
	$w_{i,s,p,q} \leq u_{i,p,q}$ $w_{i,s,p,q} \leq x_{i,q}$	$\forall i \in [n], s \in [k], p, q \in [m]$ $\forall i \in [n], s \in [k], p, q \in [m]$
	$w_{i,s,p,q} \leq v_{s,p,q}$	$\forall i \in [n], s \in [k], p, q \in [m]$ $\forall i \in [n], s \in [k], p, q \in [m]$
	$w_{i,s,p,q} \ge 0$	$\forall i \in [n], s \in [k], p, q \in [m]$
	$y_{s,p,q} \le \sum_{i=1}^{n} a_{i,p,q} x_{i,s}$	$\forall s \in [k], p, q \in [m]$
	$y_{s,p,q} \ge \sum_{i=1}^{n} a_{i,p,q} x_{i,s} - \sum_{i=1}^{n} x_{i,s} +$	$1 \qquad \forall s \in [k], p, q \in [m]$
_	$\sum_{i=1}^{n} x_{i,s} \ge \sum_{i=1}^{n} x_{i,s+1} + 1$	$\forall s \in [k-1]$
	$x_{i,s} \in \{0,1\}$	$\forall i \in [n], s \in [k]$
	$y_{s,p,q} \ge 0$	$\forall s \in [k], p, q \in [m]$
	$z_{s,n} > 0$	$\forall s \in [k], p \in [m]$

MILP does not scale well with k and n

Coordinate Ascent (akin to k-means)

Proposition: [Aguse et al., ISMB 2019] Given fixed clustering $\sigma : [n] \rightarrow [k]$, MCT decomposes into k independent SCT instances

- 1. Fix clustering σ at random
- 2. Compute consensus tree R_s for each cluster s
- 3. Reassign each input trees T_i to cluster *s* where $d(T_i, R_s)$ is minimum
- 4. Go to 2

Coordinate Ascent (akin to k-means)

Proposition: [Aguse et al., ISMB 2019] Given fixed clustering $\sigma : [n] \rightarrow [k]$, MCT decomposes into k independent SCT instances

- 1. Fix clustering σ at random
- 2. Compute consensus tree R_s for each cluster s
- 3. Reassign each input trees T_i to cluster *s* where $d(T_i, R_s)$ is minimum

4. Go to 2

	#clusters k	MILP (1 h)	BF (1 h)	CA (1 h)	CA (100 r.)
(9	2	16	16	16	16
(1	3	16	16	16	16
lla	4	16	16	16	16
sır	5	16	14	16	16
[5]	2	15	13	15	15
n (]	3	13	7	13	13
iun	4	12	0	12	12
led	5	10	0	10	10
4)n	2	3	0	3	3
(17	3	0	0	0	0
rge	4	0	0	0	0
laı	5	0	0	0	0

Bayesian Information Criterion

Conclusion

- Introduced the Multiple Consensus Tree (MCT) problem
- Characterized combinatorial structure of optimal solutions
- Showed that MCT is NP-hard
- Presented a mixed integer linear program
- Presented an efficient heuristic and showed that it finds optimal solutions
- Model selection for the number of clusters

Future directions

- Relax infinite sites assumption
- Use medoids rather than centroids

Acknowledgments

El-Kebir group

- Nuraini Aguse
- Juho Kim
- Yuanyuan Qi
- Jiaqi Wu

Available at: https://github.com/elkebir-group/MCT

Yuanyuan Qi