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Clonal Evolution Theory of Cancer 
[Nowell, 1976]

Viewing Cancer Through the Lens of Evolution
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Mutation

Founder 
tumor cell
with somatic mutation: 
(e.g. BRAF V600E)



Clonal Evolution Theory of Cancer 
[Nowell, 1976]

Viewing Cancer Through the Lens of Evolution
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Clonal expansion



Clonal Evolution Theory of Cancer 
[Nowell, 1976]

Viewing Cancer Through the Lens of Evolution

New clones
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Clonal Evolution Theory of Cancer 
[Nowell, 1976]

Viewing Cancer Through the Lens of Evolution

Heterogeneous Tumor Phylogenetic Tree T

Question:  Why are tumor phylogenies important?

5



Phylogenies are Key to Understanding and Treating Cancer

Identify targets for treatment Understand metastatic development Recognize common patterns of 
tumor evolution across patients

These downstream analyses critically rely on accurate tumor phylogeny inference
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Phylogenies are Key to Understanding and Treating Cancer

Identify targets for treatment Understand metastatic development Recognize common patterns of 
tumor evolution across patients

These downstream analyses critically rely on accurate tumor phylogeny inference

Key challenge in phylogenetics:
Accurate phylogeny inference from data at present time
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Additional Challenge in Cancer Phylogenetics
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Phylogeny inference from mixtures 
of/incomplete measurements of leaves
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Additional Challenge in Cancer Phylogenetics

9

Phylogeny inference from mixtures 
of/incomplete measurements of leaves

Non-uniqueness of solutions:
alternative solutions with varying leaf sets
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Question:  How to summarize solution space 𝒯 in order to remove inference errors and 
identify dependencies among mutations?

Additional Challenge in Cancer Phylogenetics
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Phylogeny inference from mixtures 
of/incomplete measurements of leaves

Non-uniqueness of solutions:
alternative solutions with varying leaf sets
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Outline
• Problem Statement

• Previous work
• Problem statement
• Combinatorial characterization of solutions
• Complexity

• Method & Results
• Exact algorithm
• Heuristic algorithm
• Model selection
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Phylogenetic Trees vs. Mutation Trees

12

Phylogenetic Tree

Infinite sites assumption (ISA): each mutation is introduced once and never subsequently lost



Phylogenetic Trees vs. Mutation Trees
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Phylogenetic Tree Mutation Tree

Infinite sites assumption (ISA): each mutation is introduced once and never subsequently lost

Under ISA, a phylogenetic tree may be equivalently* represented by a mutation tree



Solution Space of Lung Cancer Patient CRUK0037
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Jamal-Hanjani et al. (2017). New England Journal of Medicine, 376(22), 2109–2121.

Jamal-Hanjani et al. inferred 17 trees for patient CRUK0037

Question:  How to summarize solution space in order to remove inference errors and 
identify dependencies among mutations?

...
[14 more]



Parent-child Graph: Union of all Edges in 𝒯
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Parent-child Graph: Union of all Edges in 𝒯
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The parent-child graph does not capture patterns of mutual exclusivity
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Question:  Can we infer a single consensus tree?

Parent-child Graph: Union of all Edges in 𝒯
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The parent-child graph does not capture patterns of mutual exclusivity
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Single Consensus Tree: Max Weight Spanning Tree

18

Oesper and colleagues. 
[ACM-BCB 2018]
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Single Consensus Tree: Max Weight Spanning Tree
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Oesper and colleagues. 
[ACM-BCB 2018]

Question:  How about inferring multiple consensus trees?

Inaccurate summary for diverse solution spaces



Multiple Consensus Trees Problem
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Simultaneous clustering and consensus tree inference
Yuanyuan QiNuraini Aguse



Multiple Consensus Trees Problem
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Multiple Consensus Trees (MCT): [ISMB/ECCB 2019]

Given trees 𝒯 = 𝑇$,… , 𝑇' and 𝑘 > 0, find surjective clustering σ ∶ 𝑛 → [𝑘]
and consensus trees ℛ = 𝑅$,… , 𝑅3 s.t. ∑56$' 𝑑(𝑇5, 𝑅9(5)) is minimum

Simultaneous clustering and consensus tree inference
Yuanyuan QiNuraini Aguse



Multiple Consensus Trees Problem
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Multiple Consensus Trees (MCT): [ISMB/ECCB 2019]

Given trees 𝒯 = 𝑇$,… , 𝑇' and 𝑘 > 0, find surjective clustering σ ∶ 𝑛 → [𝑘]
and consensus trees ℛ = 𝑅$,… , 𝑅3 s.t. ∑56$' 𝑑(𝑇5, 𝑅9(5)) is minimum

Simultaneous clustering and consensus tree inference
Yuanyuan QiNuraini Aguse



Parent-child Distance Function
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𝑇$ 𝑇;



Parent-child Distance Function
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𝑇$ 𝑇;
𝐸(𝑇$)\𝐸(𝑇;) 𝐸(𝑇;)\𝐸(𝑇$)

𝐸(𝑇$) ∩ 𝐸(𝑇;)



Parent-child Distance Function
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𝑇$ 𝑇;

Parent-child distance 𝑑(𝑇$, 𝑇;) is the size of the symmetric difference of the edge sets

Here, 𝑑 𝑇$, 𝑇; = |𝐸(𝑇$)\𝐸(𝑇;)| + |𝐸(𝑇;)\𝐸(𝑇$)| = 4.

𝐸(𝑇$)\𝐸(𝑇;) 𝐸(𝑇;)\𝐸(𝑇$)
𝐸(𝑇$) ∩ 𝐸(𝑇;)



Combinatorial Characterization of Solutions to MCT
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Single Consensus Trees (SCT): [Govek et al., ACM-BCB 2018]
Given 𝒯 = 𝑇$,… , 𝑇' , find consensus tree 𝑅 s.t.

∑56$' 𝑑(𝑇5, 𝑅) is  minimum

Solution Space 𝒯



Combinatorial Characterization of Solutions to MCT
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Single Consensus Trees (SCT): [Govek et al., ACM-BCB 2018]
Given 𝒯 = 𝑇$,… , 𝑇' , find consensus tree 𝑅 s.t.

∑56$' 𝑑(𝑇5, 𝑅) is  minimum

Theorem: [Govek et al., ACM-BCB 2018]
Max weight spanning arborescences

of parent-child graph 𝐺𝒯 are solutions to SCT   

4 edges

3 edges 

2 edges

1 edge

Consensus 
tree 𝑅

Parent-child graph 𝐺𝒯

Solution Space 𝒯



Combinatorial Characterization of Solutions to MCT
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Single Consensus Trees (SCT): [Govek et al., ACM-BCB 2018]
Given 𝒯 = 𝑇$,… , 𝑇' , find consensus tree 𝑅 s.t.

∑56$' 𝑑(𝑇5, 𝑅) is  minimum

Theorem: [Govek et al., ACM-BCB 2018]
Max weight spanning arborescences

of parent-child graph 𝐺𝒯 are solutions to SCT   

Multiple Consensus Trees (MCT): [Aguse et al., ISMB 2019]
Given 𝒯 = 𝑇$,… , 𝑇' and 𝑘 > 0, find surjective clustering 

σ ∶ 𝑛 → [𝑘] and consensus trees ℛ = 𝑅$,… , 𝑅3
s.t. ∑56$' 𝑑(𝑇5, 𝑅9(5)) is minimum 

Solution Space 𝒯



Combinatorial Characterization of Solutions to MCT

29

Single Consensus Trees (SCT): [Govek et al., ACM-BCB 2018]
Given 𝒯 = 𝑇$,… , 𝑇' , find consensus tree 𝑅 s.t.

∑56$' 𝑑(𝑇5, 𝑅) is  minimum

Theorem: [Govek et al., ACM-BCB 2018]
Max weight spanning arborescences

of parent-child graph 𝐺𝒯 are solutions to SCT   

Multiple Consensus Trees (MCT): [Aguse et al., ISMB 2019]
Given 𝒯 = 𝑇$,… , 𝑇' and 𝑘 > 0, find surjective clustering 

σ ∶ 𝑛 → [𝑘] and consensus trees ℛ = 𝑅$,… , 𝑅3
s.t. ∑56$' 𝑑(𝑇5, 𝑅9(5)) is minimum 

Proposition: [Aguse et al., ISMB 2019]
Given fixed clustering σ ∶ 𝑛 → 𝑘 , MCT decomposes into 

𝑘 independent SCT instances

Solution Space 𝒯

𝒯$
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𝒯C



Combinatorial Characterization of Solutions to MCT
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Multiple Consensus Trees (MCT): [Aguse et al., ISMB 2019]
Given 𝒯 = 𝑇$,… , 𝑇' and 𝑘 > 0, find surjective clustering 

σ ∶ 𝑛 → [𝑘] and consensus trees ℛ = 𝑅$,… , 𝑅3
s.t. ∑56$' 𝑑(𝑇5, 𝑅9(5)) is minimum 

where 𝑅9(5) is max weight spanning arborescence of 𝐺𝒯D(E)

Single Consensus Trees (SCT): [Govek et al., ACM-BCB 2018]
Given 𝒯 = 𝑇$,… , 𝑇' , find consensus tree 𝑅 s.t.

∑56$' 𝑑(𝑇5, 𝑅) is  minimum

Theorem: [Govek et al., ACM-BCB 2018]
Max weight spanning arborescences

of parent-child graph 𝐺𝒯 are solutions to SCT   

Proposition: [Aguse et al., ISMB 2019]
Given fixed clustering σ ∶ 𝑛 → 𝑘 , MCT decomposes into 

𝑘 independent SCT instances

Solution Space 𝒯
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Combinatorial Characterization of Solutions to MCT
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Multiple Consensus Trees (MCT): [Aguse et al., ISMB 2019]
Given 𝒯 = 𝑇$,… , 𝑇' and 𝑘 > 0, find surjective clustering 

σ ∶ 𝑛 → [𝑘] and consensus trees ℛ = 𝑅$,… , 𝑅3
s.t. ∑56$' 𝑑(𝑇5, 𝑅9(5)) is minimum 

where 𝑅9(5) is max weight spanning arborescence of 𝐺𝒯D(E)

Single Consensus Trees (SCT): [Govek et al., ACM-BCB 2018]
Given 𝒯 = 𝑇$,… , 𝑇' , find consensus tree 𝑅 s.t.

∑56$' 𝑑(𝑇5, 𝑅) is  minimum

Theorem: [Govek et al., ACM-BCB 2018]
Max weight spanning arborescences

of parent-child graph 𝐺𝒯 are solutions to SCT   

Proposition: [Aguse et al., ISMB 2019]
Given fixed clustering σ ∶ 𝑛 → 𝑘 , MCT decomposes into 

𝑘 independent SCT instances

Solution Space 𝒯
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Question:  How to find σ∗?
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Multiple Consensus Trees (MCT):
Given 𝒯 = 𝑇$,… , 𝑇' and 𝑘 > 0, find surjective clustering σ ∶ 𝑛 → [𝑘]

s.t. ∑56$' 𝑑(𝑇5, 𝑅9(5)) is minimum where 𝑅9(5) is max weight spanning arborescence of 𝐺𝒯D(E)

Theorem: MCT is NP-hard for general 𝑘 (by reduction from CLIQUE).
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Mixed Integer Linear Program
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Theorem: MCT is NP-hard for general 𝑘 (by 
reduction from CLIQUE).



Mixed Integer Linear Program
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Theorem: MCT is NP-hard for general 𝑘 (by 
reduction from CLIQUE).

Tree 𝑇5 is assigned to cluster 𝑠

Edge (𝑝, 𝑞) is present in consensus tree 𝑅M

Vertex 𝑝 is root of consensus tree 𝑅M



MILP does not scale well with 𝑘 and 𝑛
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Coordinate Ascent (akin to k-means)
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Proposition: [Aguse et al., ISMB 2019]
Given fixed clustering σ ∶ 𝑛 → 𝑘 , MCT decomposes into 𝑘 independent SCT instances

1. Fix clustering σ at random

2. Compute consensus tree 
𝑅M for each cluster 𝑠

3. Reassign each input trees 
𝑇5 to cluster 𝑠 where 
𝑑(𝑇5, 𝑅M) is minimum

4. Go to 2



Coordinate Ascent (akin to k-means)
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Proposition: [Aguse et al., ISMB 2019]
Given fixed clustering σ ∶ 𝑛 → 𝑘 , MCT decomposes into 𝑘 independent SCT instances

1. Fix clustering σ at random

2. Compute consensus tree 
𝑅M for each cluster 𝑠

3. Reassign each input trees 
𝑇5 to cluster 𝑠 where 
𝑑(𝑇5, 𝑅M) is minimum

4. Go to 2



Bayesian Information Criterion
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Jamal-Hanjani et al. (2017). NEJM.

Jamal-Hanjani et al. inferred 8 trees for patient CRUK0013
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Bayesian Information Criterion
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Jamal-Hanjani et al. (2017). NEJM.

Jamal-Hanjani et al. inferred 17 trees for patient CRUK0037
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Conclusion
• Introduced the Multiple Consensus Tree (MCT) problem
• Characterized combinatorial structure of optimal solutions
• Showed that MCT is NP-hard
• Presented a mixed integer linear program
• Presented an efficient heuristic and showed that it finds optimal solutions
• Model selection for the number of clusters

Future directions
• Relax infinite sites assumption
• Use medoids rather than centroids
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