Bioinformatics and Computational

Biology

Professor Mohammed El-Kebir

Computer Science • University of Illinois at Urbana-Champaigi

What is Computational Biology/Bioinformatics?

Computational biology and **bioinformatics** is an interdisciplinary field that develops and applies **computational methods** to analyze large collections of biological data, such as genetic sequences, cell populations or protein samples, to make new predictions or **discover new biology**.

https://www.nature.com/subjects/computational-biology-and-bioinformatics

COMPUTER SCIE

COMPUTER SCIENCE UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Technology and Bioinformatics are Transforming Biology

Until late 20th Century

Hypothesis Generation and Validation

21th Century and Beyond

Hypothesis Generation and Validation

High throughput technologies

A Deluge of Data

Question: What does it mean that we can sequence a genome?

No technology exists that can sequence a complete (human) genome from end to end!

Making sense of this data absolutely requires the use and development of **algorithms**!

Why Study Computational Biology?

Interdisciplinary

- Biology
- **Computer Science**
- **Mathematics**

Statistics

= FUN!

Why choose just 1?

Best Jobs	Worst Jobs
1. Actuary	200. Newspaper reporter
2. Audiologist	199. Lumberjack
3. Mathematician	198. Enlisted Military Personnel
4. Statistician	197. Cook
5. Biomedical Engineer	196. Broadcaster
6. Data Scientist	195. Photojournalist
7. Dental Hygienist	194. Corrections Officer
8. Software Engineer	193. Taxi Driver
9. Occupational Therapist	192. Firefighter
10. Computer Systems	191. Mail Carrier

http://www.careercast.com/jobs-rated/jobs-rated-report-2015-ranking-top-200-jobs

Analyst

Donald Knuth Professor emeritus of Computer Science at Stanford University Turing Award winner "father of the analysis of algorithms."

"I can't be as confident about computer science as I can about biology. Biology easily has 500 years of exciting problems to work on. It's at that level."

Coursework for Bioinformatics Research

The usual computer science stuff, but especially

- CS 125 (programming)
- CS 173 (abstract thinking)
- CS 225 (data structures)
- CS 374 (algorithms and models for computation)
- A bit of statistics is helpful (e.g., CS 361)

CS 466: Introduction to Bioinformatics! Good if you know some biology, but you can take CS 466, and learn it there!

COMPUTER SCIENCE UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Course Topic #1: Sequence Alignment

Question: How do we compare two genes/genomes?

Course Topic #2: Genome Assembly

Question: How do we put all the pieces back together?

Course Topic #3: Phylogenetics

Phylogenetic Tree of Life

https://en.wikipedia.org/wiki/Phylogenetic_tree

overtime?

Question: Can we reconstruct the evolutionary history of different species?

https://scientificbsides.wordpress.com/2014/06/09/inferring-tumour-evolution-2-comparison-to-classical-phylogenptips/

Course Topic #4: Pattern Matching

Suffix Trees

Question: How do we start to make sense of all these sequences?

http://www.genomebiology.com/2009/10/3/R25/figure/F1?highres=y

Course Topic #5: Cancer Genomics

Question: How can we analyze available data to determine what drives tumor growth and how to treat or prevent it?

Course Topics

- Sequence alignment 'How do we compare two genes/genomes?'
- Genome assembly
 'How do we put all the pieces back together?'
- 3. Phylogenetics 'What is the evolutionary history of different sequences?'
- 4. Pattern matching'How do we start to make sense out of all these sequences?'
- 5. Cancer genomics 'How do we identify what drives tumor growth and how to treat/prevent it?'

COMPUTER SCIEN

Course Topics

- Sequence alignment Dynamic programming: edit distance
- 2. Genome assembly Graphs: de Bruijn graph, Eulerian and Hamiltonian paths
- 3. Phylogenetics

Trees and distances: distance matrices, neighbor joining, hierarchical clustering. Phylogenies: Sankoff/Fitch algorithms, perfect phylogeny and compatibility

4. Pattern matching

Suffix trees/arrays. Burrows-Wheeler transform, Hidden Markov Models (HMMs)

5. Cancer genomics Cancer phylogenies: Integer linear optimization and graph algorithms

COMPUTER SCIENCE

Bioinformatics & Computational Biology Group

Top: Mohammed El-Kebir, Jian Peng, Saurabh Sinha, Tandy Warnow

Bottom: ChangXiang Zhai, Jiawei Han, and Olgica Milenkovic

And others!

https://cs.illinois.edu/research/bioinformatics-and-computational-biology

Saurabh Sinha: gene regulation, big data to knowledge

Two broad areas:

How is information about us encoded in our DNA?

How do we bring the latest and greatest in machine learning and graph mining to the biologist's desktop computer?

Research questions:

- Gene regulation: How are genes turned on and off in precisely orchestrated ways?
- Regulatory evolution: Can we model evolution of regulatory sequences?
- **Genomics of behavior:** How does DNA encode animal behavior ?
- Cancer pharmacogenomics: Can a person's DNA predict the best drug treatment?
- **Big Data To Knowledge (BD2K):** Build a "Knowledge Engine for Genomics".

http://www.sinhalab.net/

Algorithmic Network Medicine

- Understanding human diseases from gene network and DNA
- Patient stratification for personalized medicine
- Acceleration of drug design

DNA data

Predictive Modeling

Gene Network

http://jianpeng.web.engr.illinois.edu

Tandy Warnow The Tree of Life: *Multiple Challenges*

Nature Reviews | Genetics

Large datasets: 100,000+ sequences 10,000+ genes "BigData" complexity

Computational Phylogenetics

An Introduction to Designing Methods for Phylogeny Estimation

Large-scale statistical phylogeny estimation Ultra-large multiple-sequence alignment Estimating species trees from incongruent gene trees Supertree estimation Genome rearrangement phylogeny Reticulate evolution Visualization of large trees and alignments Data mining techniques to explore multiple optima

http://tandy.cs.illinois.edu

Computational Cancer Genomics -- Mohammed El-Kebir

mutation

- Cancer results from an evolutionary process where genetic mutations accumulate in cells
- Tumor cells may *migrate* and seed metastases
- Observe mutations in a tumor with DNA sequencing

Research topics:

- How does a tumor *evolve*?
 - Tumor phylogeny inference from mutation frequencies

How does *metastasis* take place?
Migration analysis of tumor cells

- How does a tumor become *resistant* to treatment?
 - Comparative analysis of pre and post treatment data
- Which mutations *drive* cancer progression?
 - Classify mutations into drivers and passengers

http://www.el-kebir.net