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Tumorigenesis: (i) Cell Division, (ii) Mutation & (iii) Migration
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Tumorigenesis: (i) Cell Division, (ii) Mutation & (iii) Migration
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Goal: Given phylogenetic tree T, find parsimonious vertex labeling ℓ with fewest migrations

Vertex 
labeling ℓ

Slatkin, M. and Maddison, W. P. (1989). A cladistic measure of gene flow inferred from the phylogenies of alleles. Genetics, 123(3), 603–613.
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Minimum Migration Analysis in Ovarian Cancer
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McPherson et al. (2016). Divergent modes of clonal spread and intraperitoneal mixing in high-grade serous 
ovarian cancer. Nature Genetics.
• Instance of the maximum parsimony small phylogeny problem [Fitch, 1971; Sankoff, 1975]
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McPherson et al. (2016). Divergent modes of clonal spread and intraperitoneal mixing in high-grade serous 

ovarian cancer. Nature Genetics.

• Instance of the maximum parsimony small phylogeny problem [Fitch, 1971; Sankoff, 1975]



Minimum Migration History is Not Unique
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• Enumerate all minimum-migration vertex labelings in the backtrace step

μ* = 13

LOv

SBwl

RFTA

Om

LFTB

ApC

ROv

μ* = 13

LOv

RFTA Om LFTB ApC

SBwl ROv

μ* = 13ApC Appendix
LFTB Left Fallopian Tube
LOv Left Ovary
RFTA Right Fallopian Tube
ROv Right Ovary
SBwl Small Bowel
Om Omentum

LOv

SBwl

RFTA

Om

LFTB

ApC

ROv

μ* = 13

ROv

RFTA Om LOv LFTB ApC

SBwl

μ* = 13



6

• Multiple tumor cells migrate simultaneously through the blood stream [Cheung et al., 2016]
• Second objective: number γ of comigrations is the number of multi-edges in migration graph G †
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Comigrations: Simultaneous Migrations of Multiple Clones

† Not necessarily true in the case of directed cycles
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Comigrations: Simultaneous Migrations of Multiple Clones
• Multiple tumor cells migrate simultaneously through the blood stream [Cheung et al., 2016]
• Second objective: number γ of comigrations is the number of multi-edges in migration graph G †

† Not necessarily true in the case of directed cyclesμ* = 13
γ = 11
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Parsimonious Migration History (PMH): Given a phylogenetic tree ! and a set " ⊆ S,M, R
of allowed migration patterns, find vertex labeling ℓ with minimum migration number )∗(!)
and smallest comigration number -.(!).

Constrained Multi-objective Optimization Problem
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El-Kebir, M., Satas, G., & Raphael, B. J. (2018). Inferring parsimonious migration histories for metastatic cancers. Nature Genetics, 50(5), 718–726.
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Results
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Theorem 1: PMH is NP-hard when ! = S

Theorem 2: PMH is fixed parameter 
tractable in the number $ of locations 
when ! = S

Parsimonious Migration History (PMH): Given a phylogenetic tree % and a set ! ⊆ S,M, R
of allowed migration patterns, find vertex labeling ℓ with minimum migration number +∗(%)
and smallest comigration number /0(%).
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PMH is NP-hard when ! = S
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3-SAT: Given φ = ⋀&'() (+&,( ∨ +&,. ∨ +&,/)
with variables {2(, … , 24} and 6 clauses, 
find 7 ∶ 9 → 0,1 satisfying φ Σ = {2(,… , 24, ¬2(, … ,¬24, ?(, … ?) , ⊥}
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PMH is NP-hard when ! = S

Three ideas:
1. Ensure that $,¬$ ∈ ((*)

or ¬$, $ ∈ ((*)
2. Ensure that ℓ∗ . / = ⊥
3. Ensure that φ is satisfiable if 

and only if ℓ∗ encodes a 
satisfying truth assignment
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Lemma: Let ! > 10% + 1 and ' > 2!) + 27%.
Then, φ is satisfiable if and only if ,∗ . = ! + 1 ) + 25%

PMH is NP-hard when 1 = S

Three ideas:
1. Ensure that 3,¬3 ∈ 7(9)

or ¬3, 3 ∈ 7(9)

2. Ensure that ℓ∗ < . = ⊥

3. Ensure that φ is satisfiable if 
and only if ℓ∗ encodes a 
satisfying truth assignment
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Lemma: Let ! > 10% + 1 and ' > 2!) + 27%.
Then, φ is satisfiable if and only if ,∗ . = ! + 1 ) + 25%
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Σ = {56, 58, 59, ¬56, ¬58, ¬59, ;6, ;8, ⊥}
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Lemma: If (1) holds then ℓ∗ is a minimum migration labeling consistent with #$.

Lemma: If there exists labeling ℓ consistent with #$ then
(1)

PMH is FPT in number % of locations when & = S
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v1 v2 v3 v4 v5 v6

u1

u2

u3 u4 u5

Vertex 
labeling   .

Leaf 
labeling  .̀̂ `⇤

v1 v2 v3 v4 v5 v6

u1

u2

u3 u4 u5

Phylogenetic tree T



Lemma: If (1) holds then ℓ∗ is a minimum migration labeling consistent with #$.

Lemma: If there exists labeling ℓ consistent with #$ then
(1)

PMH is FPT in number % of locations when & = S
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Simulations
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Available on: https://github.com/elkebir-group/PMH-S



Conclusions
• PMH is NP-hard when restricted to a multi-tree
• PMH is FPT in m when restricted to a multi-tree
• FPT algorithm is practical for modest number m of locations

Discussion:
• Applicable to other domains, i.e. comigration of bacterial/viral strains 

through a single transmission event
• Polytomy resolution version is hard as well
• Open question: Hardness when G is unrestricted or restricted to a DAG?
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Figure 1: Taxonomy of migration patterns between anatomical sites. Migration patterns can be distinguished using two

different criteria. First, by the number of clones that migrate between two anatomical sites: with monoclonal (m) seeding, every

metastasis is seeded by a single clone , whereas with polyclonal (p) seeding, multiple clones migrate from one anatomical site to

another. Second, by the migration topology: with single-source seeding (S), every metastasis is seeded from a single anatomical

site with single-source seeding (S), with multi-source seeding (M), a metastasis may be seeded by multiple anatomic sites, and with

reseeding (R), clones migrate back and forth between anatomical sites, resulting in cycles of seeding. With m anatomical sites

µmin = m� 1 and �min = m� 1 are lower bounds on the migration and comigration number, respectively. The migration pattern

affects the migration number µ and the comigration number �.
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different criteria. First, by the number of clones that migrate between two anatomical sites: with monoclonal (m) seeding, every

metastasis is seeded by a single clone , whereas with polyclonal (p) seeding, multiple clones migrate from one anatomical site to

another. Second, by the migration topology: with single-source seeding (S), every metastasis is seeded from a single anatomical
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