Parsimonious Migration History Problem:
Complexity and Algorithms




Tumorigenesis: (i) Cell Division, (ii) Mutation & (iii) Migration
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Tumorigenesis: (i) Cell Division, (ii) Mutation & (iii) Migration
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Goal: Given phylogenetic tree T, find parsimonious vertex labeling € with fewest migrations

Slatkin, M. and Maddison, W. P. (1989). A cladistic measure of gene flow inferred from the phylogenies of alleles. Genetics, 123(3), 603—613.




Minimum Migration Analysis in Ovarian Cancer

McPherson et al. (2016). Divergent modes of clonal spread and intraperitoneal mixing in high-grade serous
ovarian cancer. Nature Genetics.

* Instance of the maximum parsimony small phylogeny problem [Fitch, 1971; Sankoff, 1975]
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Minimum Migration History is Not Unigue

* Enumerate all minimum-migration vertex labelings in the backtrace step

u*=13
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Comigrations: Simultaneous Migrations of Multiple Clones

* Multiple tumor cells migrate simultaneously through the blood stream [Cheung et al., 2016]

 Second objective: number y of comigrations is the number of multi-edges in migration graph G*

T Not necessarily true in the case of directed cycles
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Comigrations: Simultaneous Migrations of Multiple Clones

* Multiple tumor cells migrate simultaneously through the blood stream [Cheung et al., 2016]

 Second objective: number y of comigrations is the number of multi-edges in migration graph G*
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Constrained Multi-objective Optimization Problem

Parsimonious Migration History (PMH): Given a phylogenetic tree T and aset P € {S,M, R}
of allowed migration patterns, find vertex labeling £ with minimum migration number u*(T)

and smallest comigration number 7 (T).

single-source seeding (S) multi-source seeding (M) reseeding (R)
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El-Kebir, M., Satas, G., & Raphael, B. J. (2018). Inferring parsimonious migration histories for metastatic cancers. Nature Genetics, 50(5), 718—-726.
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Results

Parsimonious Migration History (PMH): Given a phylogenetic tree T and a set P € {S, M, R}
of allowed migration patterns, find vertex labeling £ with minimum migration number u*(T)

and smallest comigration number y(T).

single-source seeding (S)

P = {5) Theorem 1: PMH is NP-hard when P = {S}

—
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Vertex Migration
labeling £4 |graph G 4
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Theorem 2: PMH is fixed parameter
tractable in the number m of locations

when P = {S}

elelelelele A
Phylogenetic tree T' Leaf labeling £




PMH is NP-hard when P = {S} n

I T2 T3

3-SAT: Given @ = Ai; (Vi1 V iz V ¥i3) 5
with variables {x4, ..., x,,} and k clauses, ﬂxﬂ/ HIEENE
find ¢ : [n] — {0,1} satisfying ¢ 2 = {X{, e, Xy, 1X1, ere, 21Xy, C1y one Cp 5 L}
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PMH is NP-hard when P = {S}

3-SAT: Given @ = Afoy (Viq V Yi2 V Vi3)
with variables {x;, ..., x,,} and k clauses,

find ¢ : [n] — {0,1} satisfying ¢

Three ideas:

1. Ensure that (x, =x) € E(G)
or (—x,x) € E(G)

2. Ensure that f*(r(T)) =1

3. Ensure that @ is satisfiable if
and only if £* encodes a
satisfying truth assignment
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PMH is NP-hard when P = {S} n

3-SAT: Given @ = A=y (Vi1 V ¥i2 V ¥i3) IS
with variables {x4, ..., x,,} and k clauses, mf HIEENE
find ¢ : [n] — {0,1} satisfying ¢ 2 = {X{, e, Xy, 1X1, ere, 21Xy, C1y one Cp 5 L}

Three ideas:

1. Ensure that (x, =x) € E(G)
or (—x,x) € E(G)

2. Ensure that f*(r(T)) =1

b (2B leaves)| | € (Aleaves)||d (9 leaves)

3. Ensure that @ is satisfiable if 2
and only if £* encodes a /5%\0 PPPPP
SatISfyIng trUth aSSIgnment VﬁiiablegadgetT_[‘jj] Rootgaf:i_getT[J_] ) %I7;ujegfi1eralgadget Tﬁ[iﬁ;]:ﬁ%

Lemma: Let B > 10k +1and A > 2Bn + 27k.
Then, @ is satisfiable if and only if u*(T) = (B + 1)n + 25k




w*(T) = (B + Dn + 25k
R =23%3+50%2 =119

PMH is NP-hard when P = {S}

P = (xl VXx,V —|X3) 7A\ (—lxl, —1Xo, —|X3) | T[]

k=2,n=3 C Ty
B =10k + 2 =22
A=2Bn+27k+1 =187

[xl]

T[CBQ]

r,

X = {xq1, X9, X3, 11X, T1Xy, 1 X3, C1, Cp, 1L}

Lemma: Let B > 10k +1and A > 2Bn + 27k.
Then, @ is satisfiable if and only if u*(T) = (B + 1)n + 25k )




PMH is FPT in number m of locations when P = {S}

Leaf Vertex
labeling /¢ | labeling ¢*
N
Phylogenetic tree T’ Migration tree G Phylogenetic tree T’

Lemma: If there exists labeling £ consistent with G then

dr(u,v) > da(lcag(u), £(v)) Yu,v € V(T) such that u <7 v. (1)
£ ) = {LC’%('*(T)). 0= (7).
o(l*(m(v)),LCAx(v)), ifv#r(T),

where o(s,t) = s if s =t and otherwise o(s,t) is the unique child of s that lies on the path
from s to t in G.

Lemma: If (1) holds then £* is a minimum migration labeling consistent with G.

16




PMH is FPT in number m of locations when P = {S}

Leaf Vertex
labeling /¢ | labeling ¢*
N
Phylogenetic tree T’ Migration tree G Phylogenetic tree T’

Lemma: If there exists labeling £ consistent with G then

dr(u,v) > da(lcag(u), £(v)) Yu,v € V(T) such that u <7 v. (1)
£ ) = {LC’%('*(T)). 0= (7).
o(l*(m(v)),LCAx(v)), ifv#r(T),

where o(s,t) = s if s =t and otherwise o(s,t) is the unique child of s that lies on the path
from s to t in G.

Lemma: If (1) holds then £* is a minimum migration labeling consistent with G.

17




Simulations
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Available on: https://github.com/elkebir-group/PMH-S
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Conclusions

e PMH is NP-hard when restricted to a multi-tree
e PMH is FPT in m when restricted to a multi-tree
* FPT algorithm is practical for modest number m of locations

Discussion:

* Applicable to other domains, i.e. comigration of bacterial/viral strains
through a single transmission event

* Polytomy resolution version is hard as well
* Open question: Hardness when G is unrestricted or restricted to a DAG?
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