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(A) Cellular history of a tumor: cell division, mutation and migration (B) Somatic mutations occur at distinct genomic scales
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(F) Simultaneous analysis of mutation and migration history reveals 
monoclonal single-source seeding in breast cancer

The reported migration
history has 12 migrations
and 6 comigrations, with
a polyclonal multi-source
seeding (pM) pattern.

Hoadley et al.
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In patient A7, MACHINA infers a monoclonal single-source seeding
(mS) migration history, the simplest possible migration history, with
5 migrations and 5 comigrations implying that the sequencing data
does not strongly support complicated polyclonal migration patterns
in this patient.

0.15 0.2 0.25 0.3

Frequency

1

2

3

5

8

C
lu

st
er

Kidney

variant allele frequency

cl
us

te
r

kidney

Jointly inferring the present clones and the
migration history suggests the presence of fewer
clones, including a single clone in kidney.
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Infinite sites assumption:
• No parallel evolution of SNVs
• No loss of SNVs
• SCITE [Jahn et al. 2016] 

• OncoNEM [Ross and Markowetz, 2016]
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k-Dollo Phylogeny Flip and Cluster (k-DPFC) problem. Given matrix
D 2 {0, 1, ?}m⇥n, error rates ↵,� 2 [0, 1], integers k, s, t 2 N, find matrix
B 2 {0, 1}m⇥n and tree T such that: (1) B has at most s unique rows and at
most t unique columns; (2) Pr(D | B,↵,�) is maximum; and (3) T is a k-Dollo
phylogeny for B.
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(C) Tumor phylogeny estimation from single-cell DNA-seq data with SPhyR (Single-cell Phylogeny Reconstruction)
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(D) Non-uniqueness in tumor phylogeny estimation from bulk DNA-seq data
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Comigration: simultaneous 
migration of multiple clones

The migration history is determined by a labeling of each 
vertex of the clone tree by an anatomical site.

There may exist many labelings of the same tree

and thus many possible 
migration histories. 
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Figure 1: Taxonomy of migration patterns between anatomical sites. Migration patterns can be distinguished using two

different criteria. First, by the number of clones that migrate between two anatomical sites: with monoclonal (m) seeding, every

metastasis is seeded by a single clone , whereas with polyclonal (p) seeding, multiple clones migrate from one anatomical site to

another. Second, by the migration topology: with single-source seeding (S), every metastasis is seeded from a single anatomical

site with single-source seeding (S), with multi-source seeding (M), a metastasis may be seeded by multiple anatomic sites, and with

reseeding (R), clones migrate back and forth between anatomical sites, resulting in cycles of seeding. With m anatomical sites

µmin = m� 1 and �min = m� 1 are lower bounds on the migration and comigration number, respectively. The migration pattern

affects the migration number µ and the comigration number �.
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Figure 1: Taxonomy of migration patterns between anatomical sites. Migration patterns can be distinguished using two

different criteria. First, by the number of clones that migrate between two anatomical sites: with monoclonal (m) seeding, every

metastasis is seeded by a single clone , whereas with polyclonal (p) seeding, multiple clones migrate from one anatomical site to

another. Second, by the migration topology: with single-source seeding (S), every metastasis is seeded from a single anatomical

site with single-source seeding (S), with multi-source seeding (M), a metastasis may be seeded by multiple anatomic sites, and with

reseeding (R), clones migrate back and forth between anatomical sites, resulting in cycles of seeding. With m anatomical sites

µmin = m� 1 and �min = m� 1 are lower bounds on the migration and comigration number, respectively. The migration pattern

affects the migration number µ and the comigration number �.
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Figure 1: Taxonomy of migration patterns between anatomical sites. Migration patterns can be distinguished using two

different criteria. First, by the number of clones that migrate between two anatomical sites: with monoclonal (m) seeding, every

metastasis is seeded by a single clone , whereas with polyclonal (p) seeding, multiple clones migrate from one anatomical site to

another. Second, by the migration topology: with single-source seeding (S), every metastasis is seeded from a single anatomical

site with single-source seeding (S), with multi-source seeding (M), a metastasis may be seeded by multiple anatomic sites, and with

reseeding (R), clones migrate back and forth between anatomical sites, resulting in cycles of seeding. With m anatomical sites

µmin = m� 1 and �min = m� 1 are lower bounds on the migration and comigration number, respectively. The migration pattern

affects the migration number µ and the comigration number �.
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Taxonomy of Migration Patterns

We describe the complexity of a migration history 
according to:
1. The number of migrations
2. The number of comigrations
3. The migration pattern

(E) Migrations and comigrations distinguish migration 
patterns

Extant clones labeled by 
anatomical site

Ancestral clones labeled 
by anatomical site

Migration
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