Poster #B-845

Inferring Parsimonious Migration Histories for Metastatic Cancers

Mohammed El-Kebir, Gryte Satas and Ben Raphael

El-Kebir, M., Satas, G., & Raphael, B. J. (2018). Inferring parsimonious migration histories for metastatic cancers. *Nature Genetics*, *50*(5), 718–726. http://doi.org/10.1038/s41588-018-0106-z

Tumorigenesis: (i) Cell Mutation

Clonal Theory of Cancer [Nowell, 1976]

> Mutation Founder tumor cell

Tumorigenesis: (i) Cell Mutation, (ii) Cell Division

Clonal Theory of Cancer [Nowell, 1976]

Tumorigenesis: (i) Cell Division, (ii) Mutation & (iii) Migration

Goal: Given clone tree *T*, find *parsimonious* vertex labeling *e* with fewest migrations

Minimum Migration Analysis in Ovarian Cancer

McPherson et al. (2016). Divergent modes of clonal spread and intraperitoneal mixing in high-grade serous ovarian cancer. *Nature Genetics*.

• Instance of the maximum parsimony small phylogeny problem [Fitch, 1971; Sankoff, 1975]

Minimum Migration History is Not Unique

• Enumerate all minimum-migration vertex labelings in the backtrace step

Appendix Left Fallopian Tube LFTB Left Ovary **Right Fallopian Tube** RFTA **Right Ovary** Small Bowel SBwl Omentum

Comigrations: Simultaneous Migrations of Multiple Clones

- Multiple tumor cells migrate simultaneously through the blood stream [Cheung et al., 2016]
- Second objective: number y of comigrations is the number of multi-edges in migration graph G⁺

LOv

ROv

Om

B1 Om

⁺ Not necessarily true in the case of directed cycles

Comigrations: Simultaneous Migrations of Multiple Clones

- Multiple tumor cells migrate simultaneously through the blood stream [Cheung et al., 2016]
- Second objective: number γ of comigrations is the number of multi-edges in migration graph G^+

Tradeoffs between Migrations, Comigrations and Migration Pattern

Parsimonious Migration History (PMH): Given a clone tree T and a set \mathcal{P} of allowed migration patterns, find vertex labeling ℓ with minimum migration number $\mu^*(T)$ and smallest comigration number $\hat{\gamma}(T)$.

PMH is NP-hard [El-Kebir, WABI 2018]

MACHINA: Joint Clone Tree and Migration History Inference

Applying MACHINA to Metastatic Breast Cancer

A7 Patient

• Triple negative, basal-like breast cancer presenting with Stage IIIA disease

- Treated with neoadjuvant AC-T achieving stable disease, followed by mastectomy and radiation
- After 17 months, patient presented with Stage IV disease with 7 distant metastases
- Died of disease in 25 months
- Six tumors for WGS: primary, rib, kidney, brain, liver, and lung

Hoadley et al. Tumor Evolution in Two Patients with Basal-like Breast Cancer: A Retrospective Genomics Study of Multiple Metastases. *PLOS Med*, *13*(12) 2016

Conclusions & Acknowledgments

- Migration history not determined by migration number
- Group of cells from distinct clones may comigrate
- Tradeoff between migrations, comigrations and migration pattern
- MACHINA: algorithm for joint clone tree and migration history inference from bulk DNA sequencing data

https://github.com/raphael-group/machina

Research Group Benjamin J. Raphael **Gryte Satas** Matthew Reyna Rebecca Elyanow Simone Zaccaria

Funding

Poster #B-845

El-Kebir, M., Satas, G., & Raphael, B. J. (2018). Inferring parsimonious migration histories for metastatic cancers. Nature Genetics, 50(5), 718-726. http://doi.org/10.1038/s41588-018-0106-z

MACHINA accurately infers clone trees and migration histories on simulated data

