
Inferring Parsimonious Migration 
Histories for Metastatic Cancers

Mohammed El-Kebir, Gryte Satas and Ben Raphael

El-Kebir, M., Satas, G., & Raphael, B. J. (2018). Inferring parsimonious migration histories for metastatic cancers. 
Nature Genetics, 50(5), 718–726. http://doi.org/10.1038/s41588-018-0106-z

Poster #B-845



Clonal Theory of Cancer 
[Nowell, 1976]

Tumorigenesis: (i) Cell Mutation
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Clonal Theory of Cancer 
[Nowell, 1976]

Tumorigenesis: (i) Cell Mutation, (ii) Cell Division
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Tumorigenesis: (i) Cell Division, (ii) Mutation & (iii) Migration

2

Primary 
Tumor

Brain 
Metastasis

Liver 
Metastasis



Mathematical Model for Cell Division, Mutation & Migration
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Mathematical Model for Cell Division, Mutation & Migration
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Goal: Given clone tree T, find parsimonious vertex labeling ℓ with fewest migrations
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Minimum Migration Analysis in Ovarian Cancer
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McPherson et al. (2016). Divergent modes of clonal spread and intraperitoneal mixing in high-grade serous 

ovarian cancer. Nature Genetics.

• Instance of the maximum parsimony small phylogeny problem [Fitch, 1971; Sankoff, 1975]



Minimum Migration History is Not Unique
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• Enumerate all minimum-migration vertex labelings in the backtrace step
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• Multiple tumor cells migrate simultaneously through the blood stream [Cheung et al., 2016]
• Second objective: number γ of comigrations is the number of multi-edges in migration graph G †
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Comigrations: Simultaneous Migrations of Multiple Clones

† Not necessarily true in the case of directed cycles
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Comigrations: Simultaneous Migrations of Multiple Clones
• Multiple tumor cells migrate simultaneously through the blood stream [Cheung et al., 2016]
• Second objective: number γ of comigrations is the number of multi-edges in migration graph G †

† Not necessarily true in the case of directed cyclesμ* = 13
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Parsimonious Migration History (PMH): Given a clone 
tree ! and a set " of allowed migration patterns, find 
vertex labeling ℓ with minimum migration number 
$∗(!) and smallest comigration number ()(!).

PMH is NP-hard 
[El-Kebir, WABI 2018]
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Figure 1: Taxonomy of migration patterns between anatomical sites. Migration patterns can be distinguished using two

different criteria. First, by the number of clones that migrate between two anatomical sites: with monoclonal (m) seeding, every

metastasis is seeded by a single clone , whereas with polyclonal (p) seeding, multiple clones migrate from one anatomical site to

another. Second, by the migration topology: with single-source seeding (S), every metastasis is seeded from a single anatomical

site with single-source seeding (S), with multi-source seeding (M), a metastasis may be seeded by multiple anatomic sites, and with

reseeding (R), clones migrate back and forth between anatomical sites, resulting in cycles of seeding. With m anatomical sites

µmin = m� 1 and �min = m� 1 are lower bounds on the migration and comigration number, respectively. The migration pattern

affects the migration number µ and the comigration number �.
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Figure 1: Taxonomy of migration patterns between anatomical sites. Migration patterns can be distinguished using two

different criteria. First, by the number of clones that migrate between two anatomical sites: with monoclonal (m) seeding, every

metastasis is seeded by a single clone , whereas with polyclonal (p) seeding, multiple clones migrate from one anatomical site to

another. Second, by the migration topology: with single-source seeding (S), every metastasis is seeded from a single anatomical

site with single-source seeding (S), with multi-source seeding (M), a metastasis may be seeded by multiple anatomic sites, and with

reseeding (R), clones migrate back and forth between anatomical sites, resulting in cycles of seeding. With m anatomical sites

µmin = m� 1 and �min = m� 1 are lower bounds on the migration and comigration number, respectively. The migration pattern

affects the migration number µ and the comigration number �.
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different criteria. First, by the number of clones that migrate between two anatomical sites: with monoclonal (m) seeding, every

metastasis is seeded by a single clone , whereas with polyclonal (p) seeding, multiple clones migrate from one anatomical site to

another. Second, by the migration topology: with single-source seeding (S), every metastasis is seeded from a single anatomical

site with single-source seeding (S), with multi-source seeding (M), a metastasis may be seeded by multiple anatomic sites, and with

reseeding (R), clones migrate back and forth between anatomical sites, resulting in cycles of seeding. With m anatomical sites
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Clone Tree Migration Graph

Label ancestral vertices by anatomical sites 

Resolve clone tree ambiguities
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MACHINA: Joint Clone Tree and Migration History Inference



Applying MACHINA to Metastatic Breast Cancer
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Hoadley et al. Tumor Evolution in Two 
Patients with Basal-like Breast Cancer: A 
Retrospective Genomics Study of Multiple 
Metastases. PLOS Med, 13(12) 2016
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Conclusions & Acknowledgments
• Migration history not determined by 

migration number
• Group of cells from distinct clones 

may comigrate
• Tradeoff between migrations, 

comigrations and migration pattern
• MACHINA: algorithm for joint clone 

tree and migration history inference 
from bulk DNA sequencing data

https://github.com/raphael-group/machina
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Resolving Clone Tree Ambiguities
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PMH-TR

Parsimonious Migration History (PMH): Given a clone tree ! and a set " of 
allowed migration patterns, find a vertex labeling ℓ with the minimum migration 
number $∗(!) and subsequently the smallest comigration number ()(!). 

Parsimonious Migration History with Tree Refinement (PMH-TR): Given a clone 
tree ! and a set " of allowed migration patterns, find a refinement !′of ! and 
vertex labeling ℓ of !′with the minimum migration number $∗(!′), and 
subsequently smallest comigration number )̂ (!′).



MACHINA accurately infers clone trees and migration 
histories on simulated data
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