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Clonal Theory of Cancer 
[Nowell, 1976]

Founder 
tumor cell

Cancer Evolution and Intra-Tumor Heterogeneity
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Clonal Theory of Cancer 
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Heterogeneous Tumor

Clone is a group              of cells 
with the same mutations {    ,    }



Cancer Evolution: Cell Division, Mutation & Migration
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Primary Tumor

Brain Metastasis

Liver Metastasis

Three processes:
1. Division
2. Mutation
3. Migration



Understanding Tumor Life History Has Clinical Applications
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1. Identify targets for treatment 2. Understand metastatic development

Figures adapted from [Um et al., 2016] and [Gundem et al., 2015]

3. Recognize common patterns of 
tumor evolution across patients



Outline – Reconstructing Cancer Evolution
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Cell division and mutation Cell migration

Precise mathematical models are needed to describe the evolutionary process in cancer

[El-Kebir*, Oesper* et al., ISMB 2015/Bioinformatics]
[El-Kebir et al., RECOMB 2016]; [El-Kebir*, Satas* et al., Cell Systems 2016]

[El-Kebir et al., Nature Genetics 2018]



Tumor Sequencing
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Tumor
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…GAGAAAGCTGCGTTTCCAGTAAGACGTGGACGA…

…GAGAAAGCTGCGCTTCCAGTAAGACCTGGAGGA…

…GAGAAAGCTGCGCTTCCAGTAAGACGTGGACGA…

…GTGAAAGCTGCGCTTCCGGTAAGACGTGGACGA…

…GTGAAAGCTGCGCTTCCAGTAAGACGTGGACGA…

…GTGAACGCTGCGCTTCCAGTAAGACGTGGACGA…

Human genome : 3 billion base pairs

mutations



Sequencing and Tumor Phylogeny Estimation
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Sequencing and Tumor Phylogeny Estimation

13

Maximum 
Parsimony / Likelihood
Phylogeny Estimation

characters

ta
xa

100000 011000 010100 010010 010001

000000

010000010000

010000

0

BBBB@

1 0 0 0 0 0
0 1 1 0 0 0
0 1 0 1 0 0
0 1 0 0 1 0
0 1 0 0 0 1

1

CCCCAta
xa

 / 
sp

ec
ie

s

ta
xa



Sequencing and Tumor Phylogeny Estimation
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Sequencing and Tumor Phylogeny Estimation
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Tumor Sequencing
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Tumor

Normal
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…GAGAAAGCTGCGTTTCCAGTAAGACGTGGACGA…

…GAGAAAGCTGCGCTTCCAGTAAGACCTGGAGGA…

…GAGAAAGCTGCGCTTCCAGTAAGACGTGGACGA…

…GTGAAAGCTGCGCTTCCGGTAAGACGTGGACGA…

…GTGAAAGCTGCGCTTCCAGTAAGACGTGGACGA…

…GTGAACGCTGCGCTTCCAGTAAGACGTGGACGA…

Human genome : 3 billion base pairs

mutations



Sequencing and Tumor Phylogeny Estimation
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Tumor

Normal

…GAGAAAGCTGCGTTTCCAGTAAGACGTGGACGA…

Short Read : 100 base pairs



Sequencing and Tumor Phylogeny Estimation

18

Tumor

Normal

…GAGAAAGCTGCGTTTCCAGTAAGACGTGGACGA…

Variant allele frequency (VAF): 0.4

ACGAGTGG
GGACGAGT

…GTAAGACGTGGACGAGTGGACGA…
GGACGAG

GGAGTGGA
GGAGGAGT



Sequencing and Tumor Phylogeny Estimation
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sequencing

???
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Sequencing and Tumor Phylogeny Estimation
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DNA 
sequencing

n mutations

Frequency Matrix F

m
sa

m
pl

es
S3

S2

S1
0

@
0.8 0.8 0.8 0.0 0.0 0.0
0.7 0.6 0.0 0.6 0.0 0.0
0.8 0.0 0.0 0.0 0.6 0.4

1

A

0.8 0.6 0.1/0.2 0.2 0.4S1 S2

S3

Tumor Phylogeny Estimation: Given frequencies F, find (1) phylogeny T and (2) proportions U

(1) Phylogeny T

(2) Proportions U
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Tumor Phylogeny Estimation
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[Kim et al., Clin Cancer Res 21(19), 2015]:
• 5 primary samples (P1-P5)
• 2 metastases (M1-M2)
• 412 single-nucleotide variants (SNVs)
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Tumor Phylogeny Estimation
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Heuristic for Tumor Phylogeny Estimation
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n mutations

Frequency Matrix F

Discretize

Metastatic Colorectal Cancer (Patient CRC2)
[Kim et al., Clin Cancer Res 21(19), 2015]:
• 5 primary samples (P1-P5)
• 2 metastases (M1-M2)
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• 41 mutate more than once (homoplasy)
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Perfect Phylogeny Theorem [Estabrook, 1971] [Gusfield, 1991]

Assumptions:
• Infinite sites assumption: a character changes state once
• Error-free data

Tumor Phylogeny Estimation: Given frequencies F, 
find (1) phylogeny T and (2) proportions U

Equivalent
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VAF Factorization Problem (VAFFP) [El-Kebir*, Oesper* et al., 2015]

Given F, find U and B such that F = U B

n mutations

clones

clones
n mutations

= 

m
sa

m
pl

es
Frequency Matrix F Usage Matrix U

0

@
0.0 0.0 0.8 0.0 0.0 0.0
0.0 0.0 0.0 0.6 0.0 0.0
0.2 0.0 0.0 0.0 0.2 0.4

1

A

0

BBBBBB@

1 0 0 0 0 0
1 1 0 0 0 0
1 1 1 0 0 0
1 1 0 1 0 0
1 0 0 0 1 0
1 0 0 0 1 1

1

CCCCCCAS3

S2

S1

m
sa

m
pl

es

S3

S2

S1

Two-State Perfect Phylogeny (PP) Mixtures

0

@
0.8 0.8 0.8 0.0 0.0 0.0
0.7 0.6 0.0 0.6 0.0 0.0
0.8 0.0 0.0 0.0 0.6 0.4

1

A

0

@
0.0 0.0 0.8 0.0 0.0 0.0
0.1 0.0 0.0 0.6 0.0 0.0
0.2 0.0 0.0 0.0 0.2 0.4

1

A
1-1

upj � 0 and
X

j

upj  1

Assumptions:
• Infinite sites assumption: a character changes state once
• Error-free data

Restricted PP Matrix B Restricted PP Tree T

Rows of U are mixture proportions
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Equivalent

Perfect Phylogeny Theorem [Estabrook, 1971] [Gusfield, 1991]

Tumor Phylogeny Estimation: Given frequencies F, 
find (1) phylogeny T and (2) proportions U



VAF Factorization Problem (VAFFP) [El-Kebir*, Oesper* et al., 2015]

Given F, find U and B such that F = U B
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Assumptions:
• Infinite sites assumption: a character changes state once
• Error-free data

Variant of VAFFP:
TrAp [Strino et al., 2013], PhyloSub [Jiao et al., 2014]
CITUP [Malikic et al., 2015], BitPhylogeny [Yuan et al., 2015]
LICHeE [Popic et al., 2015],  …

Restricted PP Matrix B Restricted PP Tree T
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VAF Factorization Problem (VAFFP) [El-Kebir*, Oesper* et al., 2015]

Given F, find U and B such that F = U B
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Assumptions:
• Infinite sites assumption: a character changes state once
• Error-free data

Theorem 2:
VAFFP is NP-complete

Theorem 1:
T is a solution to the VAFFP if and only if T is a 
spanning tree of G satisfying the sum condition

GRestricted PP Matrix B
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Sum Condition:
Given F and T, fpj �

X

k child of j

fpk

Equivalent



Given F and T (or B), is there a usage matrix U?
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Given F and T (or B), is there a usage matrix U?
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Lemma: B is invertible

VAFFP: Given F, find U and B such that F = U B
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k child of j
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Given F and B, U is unique: U = F B-1

Restricted PP Matrix B



Given F and T (or B), is there a usage matrix U?

Restricted PP Matrix B

= 
Frequency Matrix F Usage Matrix U
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VAFFP: Given F, find U and B such that F = U B
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Combinatorial Characterization of Solutions
Lemma:

upj = fpj �
X

k child of j

fpk
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Combinatorial Characterization of Solutions
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Ancestry graph G = (V, A); given F
• Vertex for every mutation
• Edge                      iff

for all samples p
(j, k) 2 A fpj � fpk
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Ancestry Graph G = (V, A)

Lemma (Sum Condition):
Given F and T, for all samples p and 
mutations j, fpj �

X

k child of j

fpk necessary

sufficient

F

potential parental
relationship



Theorem 2:
VAFFP is NP-complete

Combinatorial Characterization of Solutions
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Ancestry graph G = (V, A); given F
• Vertex for every mutation
• Edge                      iff

for all samples p
(j, k) 2 A fpj � fpk

Theorem 1:
T is a solution to the VAFFP if and only if 
T is a spanning tree of G satisfying the Sum 
Condition

necessary
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Ancestry Graph G = (V, A)

Lemma (Sum Condition):
Given F and T, for all samples p and 
mutations j, fpj �

X

k child of j

fpk necessary

sufficient

T
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max
X

(vj ,vk)2A0

xjk

s.t.
X

vj2�+(vr)

xrj = 1

xkl 
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vj2��(vk)

xjk 8(vk, vl) 2 A
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xjk  1 8vk 2 V
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fplxkl 8p 2 [m], vk 2 V

xjk 2 {0, 1} 8(vj , vk) 2 A0

Find the largest 
set of edges in G

Exactly one root node

Connectivity

Tree

Sum condition

Solving the VAFFP: ILP formulation
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G = (V, A)



Outline

Tumor Phylogeny 
Estimation

Tumor Migration 
Analysis

P

M1

M2

Cell division and mutation Cell migration

[El-Kebir*, Oesper* et al., ISMB 2015/Bioinformatics]

Mixed tumor samples require 
specialized phylogeny algorithms

• Infinite sites assumption
• Error-free data

VAF Factorization Problem (VAFFP)
Given F, find U and B such that F = U B

• Combinatorial characterization as constrained spanning trees in a directed acyclic graph
• Integer linear programming

Biological Problem Assumptions Computational Problem

Approach
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Probabilistic Model for Noisy Measurements

37

VAF posterior distribution (beta) given 
the reads of mutation i in sample p

[Xpi] = 
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VAF posterior distribution (beta) given 
the reads of mutation i in sample p

[Xpi] = 

mutations

sam
ples

Probabilistic Model for Noisy Measurements
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Consider (1 - α) confidence intervals:
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Approximate Ancestry Graph
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Approximate ancestry graph G:

V: indistinguishable mutations

E: connect vertices (j,k) with high 
posterior ancestral probability 
Pr[Xpj > Xpk] 

Potentially ancestral mutations
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AncesTree:
1. Build approximate ancestry 

graph G

2. Find the largest tree T in the 
approximate ancestry graph G
and matrix F that satisfy the 
sum condition for T and F
(mixed integer linear 
programming)

3. Compute the usage matrix U

AncesTree
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Solving the I-VAFFP: MILP formulation
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max
X

(vj ,vk)2A0

xjk

s.t.
X

vj2�+(vr)
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xkl 
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fpkxjk �
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Find the largest 
set of edges with a tie-breaker
Exactly one root node

Connectivity

Tree

Sum condition
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Outline

Tumor Phylogeny 
Estimation

Tumor Migration 
Analysis

P

M1

M2

Cell division and mutation Cell migration

[El-Kebir*, Oesper* et al., ISMB 2015/Bioinformatics]

Mixed tumor samples require 
specialized phylogeny algorithms

• Infinite sites assumption Interval VAF Factorization Problem (I-VAFFP)
Given F - and F+ , find F, U and B such that F = U B

• Combinatorial characterization as constrained spanning trees in a directed acyclic graph
• Probabilistic model for noisy variant allele frequencies
• AncesTree : mixed integer linear programming

Biological Problem Assumptions Computational Problem

Approach
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Results on Simulated Data
Generated:

• 3,4,5 node trees
• 20 Mutations
• 5 Samples
• Average coverage: 200x

Ran:
• AncesTree (Combinatorial) 
• PhyloSub (Probabilistic) [Jiao et al., 2014]
• Canopy (Probabilistic) [Jiang et al., 2016]

3 nodes 4 nodes 5 nodes

ancestral
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Runtime on Simulated Data

3 nodes 4 nodes 5 nodes

44

1 minute
1 hour
8 hours



Outline

Tumor Phylogeny 
Estimation

Tumor Migration 
Analysis

P

M1

M2

Cell division and mutation Cell migration

[El-Kebir*, Oesper* et al., ISMB 2015/Bioinformatics]

Mixed tumor samples require 
specialized phylogeny algorithms

• Infinite sites assumption Interval VAF Factorization Problem (I-VAFFP)
Given F - and F+ , find F, U and B such that F = U B

• Combinatorial characterization as constrained spanning trees in a directed acyclic graph
• Probabilistic model for noisy variant allele frequencies
• AncesTree : mixed integer linear programming

Biological Problem Assumptions Computational Problem

Approach
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[El-Kebir et al., Nature Genetics 2018]



Clone Tree Migration History

Cell Division and
Mutation History

Cell Migration 
History

mutation

Standard Phylogenetic Techniques Sample TreeMutation Matrix

*homoplasy

mutations
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inferred extant clones

Sequencing and 
Mutation Calling
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Phylogenetic 
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P

M1

M2

P

M1

M2

P

M1

M2

P

M1 M2

P
M1

M2

Parallel 
Seeding

Cascading
Seeding

(1) Cell division and mutation (2) Cell migration

Cell Division/Mutation and Migration are Separate Processes

???

Leaf-labeled Clone Tree T
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Leaf-labeled Clone Tree T

Cell Division/Mutation and Migration are Separate Processes

μ(T, ℓ) = 8 migrations

Given T and ℓ, migrations are 
bichromatic edges in T, or edges in G

Vertex Labeling ℓ

P

M1 M2

Migration Graph G
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Leaf-labeled Clone Tree T

Cell Division/Mutation and Migration are Separate Processes

μ(T, ℓ) = 8 migrations

Given T and ℓ, migrations are 
bichromatic edges in T, or edges in G

Vertex Labeling ℓ

μ(T, ℓ’) = 4 migrations

ℓ’

T

Goal: Given T, find vertex labeling ℓ
with minimum number of migrations

P

M1 M2

Migration Graph G P

M1 M2

G’
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McPherson et al. (2016). Divergent modes of clonal spread and intraperitoneal mixing in high-grade 
serous ovarian cancer. Nature Genetics.
• Instance of the maximum parsimony small phylogeny problem
• Can be solved in polynomial time [Fitch, 1971; Sankoff, 1975]

Minimum Migration Analysis in Ovarian Cancer

μ* = 13
migrations

ROv

RFTA Om LOv LFTB ApC

SBwl
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m = 7 anatomical sites

ApC
Appendix

Om
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SBwl
Small Bowel

ROv
Right Ovary LOv

Left Ovary

LFTB
Left Fallopian 
Tube

RFTA
Right Fallopian

Tube



• Dynamic programming (Sankoff/Fitch algorithm)

Outline
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Tumor Phylogeny 
Estimation

Tumor Migration 
Analysis

P

M1

M2

Cell division and mutation Cell migration

[El-Kebir et al., RECOMB 2016]; [El-Kebir*, Satas* et al., Cell Systems 2016]

Reconstructing migration 
history of a metastatic cancer

• Migrations are rare
• Migrations are independent

Parsimonious Migration History: Given T, find vertex 
labeling ℓ with minimum number of migrations

Biological Problem Assumptions Computational Problem

Approach

[El-Kebir et al., Nature Genetics 2018]
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McPherson et al. (2016). Divergent modes of clonal spread and intraperitoneal mixing in 
high-grade serous ovarian cancer. Nature Genetics.

Are there multiple vertex labelings with μ* = 13 migrations?
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Minimum Migration History is Not Unique
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LOv

RFTA Om LFTB ApC

SBwl ROv

• Enumerate all minimum-migration vertex labelings in the backtrace step

μ* = 13
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ROv

μ* = 13

LOv

RFTA Om LFTB ApC

SBwl ROv

μ* = 13ApC Appendix
LFTB Left Fallopian Tube
LOv Left Ovary
RFTA Right Fallopian Tube
ROv Right Ovary
SBwl Small Bowel
Om Omentum

LOv
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LFTB
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ROv

μ* = 13

ROv

RFTA Om LOv LFTB ApC

SBwl

μ* = 13
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• Multiple tumor cells migrate simultaneously through the blood stream [Cheung et al., 2016]

• Second objective: number γ of comigrations is the number of multi-edges in migration graph G †

ApC Appendix
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Clone Tree T
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RFTA Om LOv LFTB ApC
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μ* = 13

γ = 10

Migration Graph G

Comigrations: Simultaneous Migrations of Multiple Clones

† Not necessarily true in the case of directed cycles
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LOv
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ROv

μ* = 13
γ = 7

μ* = 13
γ = 7

Comigrations: Simultaneous Migrations of Multiple Clones
• Multiple tumor cells migrate simultaneously through the blood stream [Cheung et al., 2016]
• Second objective: number γ of comigrations is the number of multi-edges in migration graph G †

† Not necessarily true in the case of directed cyclesμ* = 13
γ = 11
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Om Omentum

• Minimum number γ* of comigrations is m – 1 (where m is #anatomical sites)

μ = 14 migrations
γ* = 6 comigrations
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Figure 1: Taxonomy of migration patterns between anatomical sites. Migration patterns can be distinguished using two

different criteria. First, by the number of clones that migrate between two anatomical sites: with monoclonal (m) seeding, every

metastasis is seeded by a single clone , whereas with polyclonal (p) seeding, multiple clones migrate from one anatomical site to

another. Second, by the migration topology: with single-source seeding (S), every metastasis is seeded from a single anatomical

site with single-source seeding (S), with multi-source seeding (M), a metastasis may be seeded by multiple anatomic sites, and with

reseeding (R), clones migrate back and forth between anatomical sites, resulting in cycles of seeding. With m anatomical sites

µmin = m� 1 and �min = m� 1 are lower bounds on the migration and comigration number, respectively. The migration pattern

affects the migration number µ and the comigration number �.
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Figure 1: Taxonomy of migration patterns between anatomical sites. Migration patterns can be distinguished using two

different criteria. First, by the number of clones that migrate between two anatomical sites: with monoclonal (m) seeding, every

metastasis is seeded by a single clone , whereas with polyclonal (p) seeding, multiple clones migrate from one anatomical site to

another. Second, by the migration topology: with single-source seeding (S), every metastasis is seeded from a single anatomical

site with single-source seeding (S), with multi-source seeding (M), a metastasis may be seeded by multiple anatomic sites, and with

reseeding (R), clones migrate back and forth between anatomical sites, resulting in cycles of seeding. With m anatomical sites

µmin = m� 1 and �min = m� 1 are lower bounds on the migration and comigration number, respectively. The migration pattern

affects the migration number µ and the comigration number �.
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Figure 1: Taxonomy of migration patterns between anatomical sites. Migration patterns can be distinguished using two

different criteria. First, by the number of clones that migrate between two anatomical sites: with monoclonal (m) seeding, every

metastasis is seeded by a single clone , whereas with polyclonal (p) seeding, multiple clones migrate from one anatomical site to

another. Second, by the migration topology: with single-source seeding (S), every metastasis is seeded from a single anatomical

site with single-source seeding (S), with multi-source seeding (M), a metastasis may be seeded by multiple anatomic sites, and with

reseeding (R), clones migrate back and forth between anatomical sites, resulting in cycles of seeding. With m anatomical sites

µmin = m� 1 and �min = m� 1 are lower bounds on the migration and comigration number, respectively. The migration pattern

affects the migration number µ and the comigration number �.
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Parsimonious Migration History Problem

PMH Problem
Parsimonious 

Migration History

Clone Tree T
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µ = 4

� = 2polyclonal single
source seeding (pS)

Allowed patternsP
{S,M,R}

Parsimonious Migration History Problem: Given a clone tree ! and a set " of 
allowed migration patterns, find a vertex labeling ℓ with the minimum migration 
number $∗(!) and subsequently the smallest comigration number ()(!).



Clone Tree Migration Graph

Label ancestral vertices by anatomical sites 

Resolve clone tree ambiguities?
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Resolving Clone Tree Ambiguities
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PMH
polytomy

Clone Tree T
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polyclonal single
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Allowed patternsP
{S,M,R} resolved

polytomy P

M1

M2

monoclonal single
source seeding (mS)

µ = 2

� = 2

PMH-TR

Parsimonious Migration History (PMH): Given a clone tree ! and a set " of 
allowed migration patterns, find a vertex labeling ℓ with the minimum migration 
number $∗(!) and subsequently the smallest comigration number ()(!). 

Parsimonious Migration History with Tree Refinement (PMH-TR): Given a clone 
tree ! and a set " of allowed migration patterns, find a refinement !′of ! and 
vertex labeling ℓ of !′with the minimum migration number $∗(!′), and 
subsequently smallest comigration number )̂ (!′).



Polytomy Resolution in Ovarian Cancer 7
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McPherson et al. (2016). Divergent modes of clonal spread and intraperitoneal mixing in 
high-grade serous ovarian cancer. Nature Genetics.
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Resolving Clone Tree Ambiguities
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Parsimonious Migration History with Tree Refinement (PMH-TI):
Given a set ! of allowed migration patterns and mutation frequency 
confidence intervals (#$= &',)$ , #* = [&',)*]), find a frequency matrix 
#̂ = [&̂',)], a clone tree /, and a vertex labeling ℓ of / such that: 

(1) &̂',) ∈ [&',)$, &',)*]; 
(2) #̂ satisfies the sum condition for /; and 
(3) vertex labeling ℓ of / has minimum migration number 4∗(/) and 

subsequently smallest comigration number 67(/).
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Clone Tree Migration Graph

Label ancestral vertices by anatomical sites 

Resolve clone tree ambiguities
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MACHINA accurately infers clone trees and migration 
histories on simulated data
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Conclusions
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Precise mathematical models are needed to describe the evolutionary process in cancer:
• Do not try to solve everything at once; it is OK to simplify and gradually add complexity
• Understanding combinatorial structure leads to a better understanding of the problem at hand
• This leads to better and efficient algorithms

[El-Kebir*, Oesper* et al., ISMB 2015/Bioinformatics]
[El-Kebir et al., RECOMB 2016]; [El-Kebir*, Satas* et al., Cell Systems 2016]

[El-Kebir et al., Nature Genetics 2018]


