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Clonal Theory of Cancer 
[Nowell, 1976]

Founder 
tumor cell

Cancer Evolution and Intra-Tumor Heterogeneity
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Clonal Theory of Cancer 
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Heterogeneous Tumor

Clone is a group              of cells 
with the same mutations {    ,    }



Cancer Evolution: Cell Division, Mutation & Migration
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Primary Tumor

Brain Metastasis

Liver Metastasis

Three processes:
1. Division
2. Mutation
3. Migration



Understanding Tumor Life History Has Clinical Applications
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1. Identify targets for treatment 2. Understand metastatic development

Figures adapted from [Um et al., 2016] and [Gundem et al., 2015]

3. Recognize common patterns of 
tumor evolution across patients



Outline – Reconstructing Cancer Evolution
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Cell division and mutation Cell migration

Precise mathematical models are needed to describe the evolutionary process in cancer

[El-Kebir*, Oesper* et al., ISMB 2015/Bioinformatics]
[El-Kebir et al., RECOMB 2016]; [El-Kebir*, Satas* et al., Cell Systems 2016]

[El-Kebir et al., Nature Genetics 2018]



Tumor Sequencing
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Tumor
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…GAGAAAGCTGCGTTTCCAGTAAGACGTGGACGA…

…GAGAAAGCTGCGCTTCCAGTAAGACCTGGAGGA…

…GAGAAAGCTGCGCTTCCAGTAAGACGTGGACGA…

…GTGAAAGCTGCGCTTCCGGTAAGACGTGGACGA…

…GTGAAAGCTGCGCTTCCAGTAAGACGTGGACGA…

…GTGAACGCTGCGCTTCCAGTAAGACGTGGACGA…

Human genome : 3 billion base pairs

mutations



Sequencing and Tumor Phylogeny Estimation
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Sequencing and Tumor Phylogeny Estimation
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Sequencing and Tumor Phylogeny Estimation
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Sequencing and Tumor Phylogeny Estimation
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Tumor Sequencing
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Tumor

Normal
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…GAGAAAGCTGCGTTTCCAGTAAGACGTGGACGA…

…GAGAAAGCTGCGCTTCCAGTAAGACCTGGAGGA…

…GAGAAAGCTGCGCTTCCAGTAAGACGTGGACGA…

…GTGAAAGCTGCGCTTCCGGTAAGACGTGGACGA…

…GTGAAAGCTGCGCTTCCAGTAAGACGTGGACGA…

…GTGAACGCTGCGCTTCCAGTAAGACGTGGACGA…

Human genome : 3 billion base pairs

mutations



Sequencing and Tumor Phylogeny Estimation
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Tumor

Normal

…GAGAAAGCTGCGTTTCCAGTAAGACGTGGACGA…

Short Read : 100 base pairs



Sequencing and Tumor Phylogeny Estimation
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Tumor

Normal

…GAGAAAGCTGCGTTTCCAGTAAGACGTGGACGA…

Variant allele frequency (VAF): 0.4

ACGAGTGG
GGACGAGT

…GTAAGACGTGGACGAGTGGACGA…
GGACGAG

GGAGTGGA
GGAGGAGT



Sequencing and Tumor Phylogeny Estimation
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sequencing
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Sequencing and Tumor Phylogeny Estimation
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DNA 
sequencing
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Frequency Matrix F
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Tumor Phylogeny Estimation: Given frequencies F, find (1) phylogeny T and (2) proportions U

(1) Phylogeny T

(2) Proportions U
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Tumor Phylogeny Estimation
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[Kim et al., Clin Cancer Res 21(19), 2015]:
• 5 primary samples (P1-P5)
• 2 metastases (M1-M2)
• 412 single-nucleotide variants (SNVs)
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Tumor Phylogeny Estimation
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Heuristic for Tumor Phylogeny Estimation
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Frequency Matrix F

Discretize

Metastatic Colorectal Cancer (Patient CRC2)
[Kim et al., Clin Cancer Res 21(19), 2015]:
• 5 primary samples (P1-P5)
• 2 metastases (M1-M2)
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Perfect Phylogeny Theorem [Estabrook, 1971] [Gusfield, 1991]

Assumptions:
• Infinite sites assumption: a character changes state once
• Error-free data

Tumor Phylogeny Estimation: Given frequencies F, 
find (1) phylogeny T and (2) proportions U

Equivalent
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VAF Factorization Problem (VAFFP) [El-Kebir*, Oesper* et al., 2015]

Given F, find U and B such that F = U B
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Assumptions:
• Infinite sites assumption: a character changes state once
• Error-free data

Restricted PP Matrix B Restricted PP Tree T

Rows of U are mixture proportions
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Equivalent

Perfect Phylogeny Theorem [Estabrook, 1971] [Gusfield, 1991]

Tumor Phylogeny Estimation: Given frequencies F, 
find (1) phylogeny T and (2) proportions U



VAF Factorization Problem (VAFFP) [El-Kebir*, Oesper* et al., 2015]

Given F, find U and B such that F = U B
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Assumptions:
• Infinite sites assumption: a character changes state once
• Error-free data

Variant of VAFFP:
TrAp [Strino et al., 2013], PhyloSub [Jiao et al., 2014]
CITUP [Malikic et al., 2015], BitPhylogeny [Yuan et al., 2015]
LICHeE [Popic et al., 2015],  …

Restricted PP Matrix B Restricted PP Tree T
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VAF Factorization Problem (VAFFP) [El-Kebir*, Oesper* et al., 2015]

Given F, find U and B such that F = U B
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Assumptions:
• Infinite sites assumption: a character changes state once
• Error-free data

Theorem 2:
VAFFP is NP-complete

Theorem 1:
T is a solution to the VAFFP if and only if T is a 
spanning tree of G satisfying the sum condition

GRestricted PP Matrix B
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Sum Condition:
Given F and T, fpj �

X

k child of j

fpk

Equivalent



Given F and T (or B), is there a usage matrix U?
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Given F and T (or B), is there a usage matrix U?
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Lemma: B is invertible

VAFFP: Given F, find U and B such that F = U B

Lemma:
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k child of j

fpk

29

Given F and B, U is unique: U = F B-1

Restricted PP Matrix B



Given F and T (or B), is there a usage matrix U?

Restricted PP Matrix B

= 
Frequency Matrix F Usage Matrix U
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VAFFP: Given F, find U and B such that F = U B
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Combinatorial Characterization of Solutions
Lemma:

upj = fpj �
X

k child of j

fpk
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Combinatorial Characterization of Solutions
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Ancestry graph G = (V, A); given F
• Vertex for every mutation
• Edge                      iff

for all samples p
(j, k) 2 A fpj � fpk

necessary

33

Ancestry Graph G = (V, A)

Lemma (Sum Condition):
Given F and T, for all samples p and 
mutations j, fpj �

X

k child of j

fpk necessary

sufficient

F

potential parental
relationship



Theorem 2:
VAFFP is NP-complete

Combinatorial Characterization of Solutions
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Ancestry graph G = (V, A); given F
• Vertex for every mutation
• Edge                      iff

for all samples p
(j, k) 2 A fpj � fpk

Theorem 1:
T is a solution to the VAFFP if and only if 
T is a spanning tree of G satisfying the Sum 
Condition

necessary
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Ancestry Graph G = (V, A)

Lemma (Sum Condition):
Given F and T, for all samples p and 
mutations j, fpj �

X

k child of j

fpk necessary

sufficient

T
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max
X

(vj ,vk)2A0

xjk

s.t.
X

vj2�+(vr)

xrj = 1

xkl 
X

vj2��(vk)

xjk 8(vk, vl) 2 A

X

vj2��(vk)

xjk  1 8vk 2 V

X

vj2��(vk)

fpkxjk �
X

vl2�+(vk)

fplxkl 8p 2 [m], vk 2 V

xjk 2 {0, 1} 8(vj , vk) 2 A0

Find the largest 
set of edges in G

Exactly one root node

Connectivity

Tree

Sum condition

Solving the VAFFP: ILP formulation
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G = (V, A)



Outline

Tumor Phylogeny 
Estimation

Tumor Migration 
Analysis

P

M1

M2

Cell division and mutation Cell migration

[El-Kebir*, Oesper* et al., ISMB 2015/Bioinformatics]

Mixed tumor samples require 
specialized phylogeny algorithms

• Infinite sites assumption
• Error-free data

VAF Factorization Problem (VAFFP)
Given F, find U and B such that F = U B

• Combinatorial characterization as constrained spanning trees in a directed acyclic graph
• Integer linear programming

Biological Problem Assumptions Computational Problem

Approach
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Probabilistic Model for Noisy Measurements

37

VAF posterior distribution (beta) given 
the reads of mutation i in sample p
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VAF posterior distribution (beta) given 
the reads of mutation i in sample p

[Xpi] = 

mutations

sam
ples

Probabilistic Model for Noisy Measurements
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Consider (1 - α) confidence intervals:

S3

S2

S1

F = [fpi] = 

mutations

sam
ples

+ +
0

@
0.9 0.85 0.87 0.05 0.0 0.0
0.75 0.65 0.05 0.68 0.0 0.0
0.83 0.0 0.04 0.0 0.67 0.48

1

A

Interval VAF Factorization Problem (I-VAFFP)
Given F - and F+ , find F, U and B such that F = U B

and                                 for all samples p and mutations if�
pi  fpi  f+

pi

F = [fpi] = - -
S3

S2

S1

mutations

sam
ples

0

@
0.75 0.78 0.77 0.0 0.0 0.0
0.55 0.43 0.0 0.54 0.0 0.0
0.56 0.0 0.0 0.0 0.57 0.34

1

A



SLC38A8

TRIM4

HMGCLL1
COL6A5

UAP1L1
TJAP1

UMOD
KCNJ13

TMEM108

CHD6

DACH2

PCDHAC2

TP53

RTL1

TLE6
ZBTB16
ENTPD4
FAM134A
FBXO11
ARNT

DNAH6

RAPGEF6

ZNF554

RREB1

FAT3

LRTOMT

FRY

NTNG1

HIST1H4E

MPLKIP

KIF1B

CREM

PEX5L

SELENBP1

AGBL1AKAP9

HPX

DGKI

TJP1

GPRIN1

FAM169A

ALDH7A1

NUP214

VWA5B2

UFSP2

PCLO

ARHGAP39

MUC16

PDE2A
OR4A16

ZMYM5

MUC16

PBRM1

LRIG3

CXorf30

PLOD2

PRKCZ

GLTPD2

0.999684

0.999036

0.911182

0.999092

0.971681

1

0.966656

0.906965

0.99996
0.969371

PPP6R1

0.999989

0.999949

0.940271

0.999999

0.99886

1

0.997305

0.99995

1

0.995108

1

0.995739

0.9557

0.944458

1

EDC4

1

1

0.999177

0.97876

1

1

1

1

1

0.972073

0.904518

1

0.975993

1

0.988355

1

0.912077

1

0.989975
0.986702

0.975518

OR2A14

1

0.999999

0.964251

1

1

0.981786

1

1

1
0.993365

0.970387

1

0.999003

1
0.997346

0.9821

0.963852

0.999934

VHL

1

1

0.997008

0.940709

1

1

0.999405

1

1

1

0.999946

0.999513

0.93077

1

1

1

0.99999

1

0.99997

0.995687

0.999123

1

1

0.999998
0.999936

0.999984

0.968824
0.962936

0.944907

0.984595

0.994764 0.981749

0.981718

0.913663

0.904958

Indistinguishable mutations

VAF

Po
st

er
io

r 
Pr

ob
ab

ili
ty

RK26 [Gerlinger et al., 2014]

Approximate Ancestry Graph
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Approximate ancestry graph G:

V: indistinguishable mutations

E: connect vertices (j,k) with high 
posterior ancestral probability 
Pr[Xpj > Xpk] 

Potentially ancestral mutations
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AncesTree:
1. Build approximate ancestry 

graph G

2. Find the largest tree T in the 
approximate ancestry graph G
and matrix F that satisfy the 
sum condition for T and F
(mixed integer linear 
programming)

3. Compute the usage matrix U

AncesTree
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Solving the I-VAFFP: MILP formulation
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max
X

(vj ,vk)2A0

xjk

s.t.
X

vj2�+(vr)
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Find the largest 
set of edges with a tie-breaker
Exactly one root node

Connectivity

Tree

Sum condition
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Outline

Tumor Phylogeny 
Estimation

Tumor Migration 
Analysis

P

M1

M2

Cell division and mutation Cell migration

[El-Kebir*, Oesper* et al., ISMB 2015/Bioinformatics]

Mixed tumor samples require 
specialized phylogeny algorithms

• Infinite sites assumption Interval VAF Factorization Problem (I-VAFFP)
Given F - and F+ , find F, U and B such that F = U B

• Combinatorial characterization as constrained spanning trees in a directed acyclic graph
• Probabilistic model for noisy variant allele frequencies
• AncesTree : mixed integer linear programming

Biological Problem Assumptions Computational Problem

Approach
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Results on Simulated Data
Generated:

• 3,4,5 node trees
• 20 Mutations
• 5 Samples
• Average coverage: 200x

Ran:
• AncesTree (Combinatorial) 
• PhyloSub (Probabilistic) [Jiao et al., 2014]
• Canopy (Probabilistic) [Jiang et al., 2016]

3 nodes 4 nodes 5 nodes

ancestral
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Runtime on Simulated Data

3 nodes 4 nodes 5 nodes

44

1 minute
1 hour
8 hours



Outline

Tumor Phylogeny 
Estimation

Tumor Migration 
Analysis

P

M1

M2

Cell division and mutation Cell migration

[El-Kebir*, Oesper* et al., ISMB 2015/Bioinformatics]

Mixed tumor samples require 
specialized phylogeny algorithms

• Infinite sites assumption Interval VAF Factorization Problem (I-VAFFP)
Given F - and F+ , find F, U and B such that F = U B

• Combinatorial characterization as constrained spanning trees in a directed acyclic graph
• Probabilistic model for noisy variant allele frequencies
• AncesTree : mixed integer linear programming

Biological Problem Assumptions Computational Problem

Approach
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[El-Kebir et al., Nature Genetics 2018]



Clone Tree Migration History

Cell Division and
Mutation History

Cell Migration 
History

mutation

Standard Phylogenetic Techniques Sample TreeMutation Matrix

*homoplasy
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Sequencing and 
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P

M1

M2

P

M1

M2

P

M1

M2

P

M1 M2

P
M1

M2

Parallel 
Seeding

Cascading
Seeding

(1) Cell division and mutation (2) Cell migration

Cell Division/Mutation and Migration are Separate Processes

???

Leaf-labeled Clone Tree T
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Leaf-labeled Clone Tree T

Cell Division/Mutation and Migration are Separate Processes

μ(T, ℓ) = 8 migrations

Given T and ℓ, migrations are 
bichromatic edges in T, or edges in G

Vertex Labeling ℓ

P

M1 M2

Migration Graph G
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Leaf-labeled Clone Tree T

Cell Division/Mutation and Migration are Separate Processes

μ(T, ℓ) = 8 migrations

Given T and ℓ, migrations are 
bichromatic edges in T, or edges in G

Vertex Labeling ℓ

μ(T, ℓ’) = 4 migrations

ℓ’

T

Goal: Given T, find vertex labeling ℓ
with minimum number of migrations

P

M1 M2

Migration Graph G P

M1 M2

G’
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McPherson et al. (2016). Divergent modes of clonal spread and intraperitoneal mixing in high-grade 
serous ovarian cancer. Nature Genetics.
• Instance of the maximum parsimony small phylogeny problem
• Can be solved in polynomial time [Fitch, 1971; Sankoff, 1975]

Minimum Migration Analysis in Ovarian Cancer

μ* = 13
migrations

ROv

RFTA Om LOv LFTB ApC

SBwl
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m = 7 anatomical sites

ApC
Appendix
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SBwl
Small Bowel

ROv
Right Ovary LOv

Left Ovary

LFTB
Left Fallopian 
Tube

RFTA
Right Fallopian

Tube



• Dynamic programming (Sankoff/Fitch algorithm)

Outline
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Tumor Phylogeny 
Estimation

Tumor Migration 
Analysis

P

M1

M2

Cell division and mutation Cell migration

[El-Kebir et al., RECOMB 2016]; [El-Kebir*, Satas* et al., Cell Systems 2016]

Reconstructing migration 
history of a metastatic cancer

• Migrations are rare
• Migrations are independent

Parsimonious Migration History: Given T, find vertex 
labeling ℓ with minimum number of migrations

Biological Problem Assumptions Computational Problem

Approach

[El-Kebir et al., Nature Genetics 2018]
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McPherson et al. (2016). Divergent modes of clonal spread and intraperitoneal mixing in 
high-grade serous ovarian cancer. Nature Genetics.

Are there multiple vertex labelings with μ* = 13 migrations?
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Minimum Migration History is Not Unique
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LOv

RFTA Om LFTB ApC

SBwl ROv

• Enumerate all minimum-migration vertex labelings in the backtrace step

μ* = 13
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ApC

ROv

μ* = 13

LOv

RFTA Om LFTB ApC

SBwl ROv

μ* = 13ApC Appendix
LFTB Left Fallopian Tube
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RFTA Right Fallopian Tube
ROv Right Ovary
SBwl Small Bowel
Om Omentum

LOv
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LFTB
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ROv

μ* = 13
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SBwl

μ* = 13
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• Multiple tumor cells migrate simultaneously through the blood stream [Cheung et al., 2016]

• Second objective: number γ of comigrations is the number of multi-edges in migration graph G †

ApC Appendix
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Clone Tree T
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RFTA Om LOv LFTB ApC
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μ* = 13

γ = 10

Migration Graph G

Comigrations: Simultaneous Migrations of Multiple Clones

† Not necessarily true in the case of directed cycles
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LOv
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ROv

μ* = 13
γ = 7

μ* = 13
γ = 7

Comigrations: Simultaneous Migrations of Multiple Clones
• Multiple tumor cells migrate simultaneously through the blood stream [Cheung et al., 2016]
• Second objective: number γ of comigrations is the number of multi-edges in migration graph G †

† Not necessarily true in the case of directed cyclesμ* = 13
γ = 11
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• Minimum number γ* of comigrations is m – 1 (where m is #anatomical sites)

μ = 14 migrations
γ* = 6 comigrations
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Figure 1: Taxonomy of migration patterns between anatomical sites. Migration patterns can be distinguished using two

different criteria. First, by the number of clones that migrate between two anatomical sites: with monoclonal (m) seeding, every

metastasis is seeded by a single clone , whereas with polyclonal (p) seeding, multiple clones migrate from one anatomical site to

another. Second, by the migration topology: with single-source seeding (S), every metastasis is seeded from a single anatomical

site with single-source seeding (S), with multi-source seeding (M), a metastasis may be seeded by multiple anatomic sites, and with

reseeding (R), clones migrate back and forth between anatomical sites, resulting in cycles of seeding. With m anatomical sites

µmin = m� 1 and �min = m� 1 are lower bounds on the migration and comigration number, respectively. The migration pattern

affects the migration number µ and the comigration number �.
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Figure 1: Taxonomy of migration patterns between anatomical sites. Migration patterns can be distinguished using two

different criteria. First, by the number of clones that migrate between two anatomical sites: with monoclonal (m) seeding, every

metastasis is seeded by a single clone , whereas with polyclonal (p) seeding, multiple clones migrate from one anatomical site to

another. Second, by the migration topology: with single-source seeding (S), every metastasis is seeded from a single anatomical

site with single-source seeding (S), with multi-source seeding (M), a metastasis may be seeded by multiple anatomic sites, and with

reseeding (R), clones migrate back and forth between anatomical sites, resulting in cycles of seeding. With m anatomical sites

µmin = m� 1 and �min = m� 1 are lower bounds on the migration and comigration number, respectively. The migration pattern

affects the migration number µ and the comigration number �.
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Figure 1: Taxonomy of migration patterns between anatomical sites. Migration patterns can be distinguished using two

different criteria. First, by the number of clones that migrate between two anatomical sites: with monoclonal (m) seeding, every

metastasis is seeded by a single clone , whereas with polyclonal (p) seeding, multiple clones migrate from one anatomical site to

another. Second, by the migration topology: with single-source seeding (S), every metastasis is seeded from a single anatomical

site with single-source seeding (S), with multi-source seeding (M), a metastasis may be seeded by multiple anatomic sites, and with

reseeding (R), clones migrate back and forth between anatomical sites, resulting in cycles of seeding. With m anatomical sites

µmin = m� 1 and �min = m� 1 are lower bounds on the migration and comigration number, respectively. The migration pattern

affects the migration number µ and the comigration number �.
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Parsimonious Migration History Problem

PMH Problem
Parsimonious 

Migration History

Clone Tree T
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µ = 4

� = 2polyclonal single
source seeding (pS)

Allowed patternsP
{S,M,R}

Parsimonious Migration History Problem: Given a clone tree ! and a set " of 
allowed migration patterns, find a vertex labeling ℓ with the minimum migration 
number $∗(!) and subsequently the smallest comigration number ()(!).



Clone Tree Migration Graph

Label ancestral vertices by anatomical sites 

Resolve clone tree ambiguities?
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Resolving Clone Tree Ambiguities
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PMH
polytomy

Clone Tree T

�

��

��

µ = 4

� = 2

polyclonal single
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Allowed patternsP
{S,M,R} resolved

polytomy P

M1

M2

monoclonal single
source seeding (mS)

µ = 2

� = 2

PMH-TR

Parsimonious Migration History (PMH): Given a clone tree ! and a set " of 
allowed migration patterns, find a vertex labeling ℓ with the minimum migration 
number $∗(!) and subsequently the smallest comigration number ()(!). 

Parsimonious Migration History with Tree Refinement (PMH-TR): Given a clone 
tree ! and a set " of allowed migration patterns, find a refinement !′of ! and 
vertex labeling ℓ of !′with the minimum migration number $∗(!′), and 
subsequently smallest comigration number )̂ (!′).



Polytomy Resolution in Ovarian Cancer 7
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McPherson et al. (2016). Divergent modes of clonal spread and intraperitoneal mixing in 
high-grade serous ovarian cancer. Nature Genetics.
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Resolving Clone Tree Ambiguities
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Parsimonious Migration History with Tree Refinement (PMH-TI):
Given a set ! of allowed migration patterns and mutation frequency 
confidence intervals (#$= &',)$ , #* = [&',)*]), find a frequency matrix 
#̂ = [&̂',)], a clone tree /, and a vertex labeling ℓ of / such that: 

(1) &̂',) ∈ [&',)$, &',)*]; 
(2) #̂ satisfies the sum condition for /; and 
(3) vertex labeling ℓ of / has minimum migration number 4∗(/) and 

subsequently smallest comigration number 67(/).
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Clone Tree Migration Graph

Label ancestral vertices by anatomical sites 

Resolve clone tree ambiguities
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MACHINA accurately infers clone trees and migration 
histories on simulated data
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Conclusions
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Precise mathematical models are needed to describe the evolutionary process in cancer:
• Do not try to solve everything at once; it is OK to simplify and gradually add complexity
• Understanding combinatorial structure leads to a better understanding of the problem at hand
• This leads to better and efficient algorithms

[El-Kebir*, Oesper* et al., ISMB 2015/Bioinformatics]
[El-Kebir et al., RECOMB 2016]; [El-Kebir*, Satas* et al., Cell Systems 2016]

[El-Kebir et al., Nature Genetics 2018]


