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Problem Statement - Some Context

e Inorder to make precision (specialized medicine) work, there is a need to understand the specifics
of how cells evolve across the spectrum of solid tumor types.
e Methods to infer the role of natural selection within established tumor types is lacking.
o Tumor progression takes years,

o  Oftenonly detected in late stages
o  This contributes to poor understanding of tumorigenesis and growth immediately after transformation
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Clonal Evolution Model

e Evolution is the product of 3 major underlying processes
o  Mutation
m Readily measured in human tumours
o  Selection
m Assumed to govern the growth of an established tumor after tumorigenesis
(transformation)
Acquisition of additional “driver” mutations results in multiple selective sweeps.
Due to the selection of driver mutations, hitchhiking passenger mutations can also
attan high frequency and manifest as subclonal clusters in bulk sequencing data
o Drift
m Difficult to distinguish from selection but may also cause extensive ITH.
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Goal

Test hypotheses about underlying evolutionary processes using spatiotemporal patterns of
genetic variation among cell populations.

e Usesimulations to make up lack of high quality early stage data
e Leverage powerful statistical methods to reveal something about
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Key Questions

e What kind of role does selection play in the life of a tumor?
e Canyoudistinguish strong positive selection from weak selection or neutral evolution
during tumor progression?
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Methods - Spatial Computational Modelling

e Simulate various modes of evolution
o  Neutral
o  Neutral CSC
o  Positive Selection (s =0.01->0.1 etc.) Acquisition of advantageous mutations adjusts birth-death rate
accordingtos.
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e Simulate various modes of evolution.
e Ateachtime step,arandom deme near the periphery of the tumor is chosen for division.

o

This peripheral growth model is consistent with recent studies that show that cells at the periphery are more
proliferative than those at the core of a tumor.

A random empty lattice site is chosen for the replicate deme.

Deme size is chosen conservatively as a maximum of 10k, as large demes hinder selection structurally

When a deme reaches maximum size it splits into two offspring demes. The split is modelled by a binomial
distribution (NC, p=0.5) where N, is the current size of the deme
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Methods - Spatial Computational Modelling

e Simulate various modes of evolution.
e Ateachtimestep,arandom deme near the periphery of the tumor is chosen for division
e Celldivisionis a continuous time Markov Process known as a Birth-Death process

o  Atanytime step there ap probability that a cell will divide and a q = 1-p probability that it will die.

o Death/Birth rate ratio is important and is characteristic of cancers. E.g.h = q/p = 0.99 in early tumors but
0.72 in metastatic colorectal cancer.
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Methods - Spatial Computational Modelling

Simulate various modes of evolution.
At each time step, arandom deme near the periphery of the tumor is chosen for division
Cell division is a continuous time Markov Process known as a Birth-Death process
Poisson process random point mutations assuming infinite sites model, at deme division time.
o Under null models, all mutations are neutral and don’t confer fitness advantage
o Under selection models, beneficial mutations occur as a poisson process with a different mean, and increase

the birth rate of the mutated cell by s.
o  All beneficial mutations are given a unique index, and other statistics like host cells are recorded.
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Methods - Spatial Computational Modelling

Simulate various modes of evolution.

At each time step, arandom deme near the periphery of the tumor is chosen for division
Cell division is a continuous time Markov Process known as a Birth-Death process

Poisson process random point mutations assuming infinite sites model, at deme division time.



Methods - ssnv Calling, SCNA detection and VAF adjustment

e Foreachraw SNV call from MuTect, read alignmet features from all samples were
reinspected in an automated fashion to assess confidence.

e TitanCNA was used to estimate somatic CNAs, and the observed VAF for each
detected SSNV was adjusted on the basis of cancer cell fraction, tumor purities, as

well as local copy number estimates.
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e An SSNV m is subclonal if all of the following criteria are met
o Total Probability P_ < 0.05
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e P_.isthe probability for region i of observingless thanS_.reads having the mutant

allele out of N . reads.
e Thisis provided the lower bound of f described above which is the expected

frequency if the SSNV is pubilic.
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Methods - Subclonal SSNV identification in MRS

e AnSSNV m is subclonal if all of the following criteria are met
o Total Probability P_ < 0.05
o AtleastoneregioniwithCCF_+95%Cl .<1
o At least oneregioniwith adjusted VAF < 0.25, which was
chosen experimentally.
e AnySSNV that fails to meet one of the above criteria is considered
public!



Methods - ITH metrics




Methods - ITH metrics

e Thefirstis fHrs, the fraction of high frequency region-specific subclonal SSNVs out
of all region-specific subclonal SSNVs
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VAF >0.08 for region a, in a pairwise comparison j between regions a and b.
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where SM?lgh and SM:-lll are the number of high-frequency subclonal
SSNVs (adjusted VAF > 0.2, hereafter referred to as VAF) and the number
of all subclonal SSNV's with VAF >0.08 for region i. The cutoff was set to 0.2
because above this value fHsub tends to plateau in its sensitivity to distinguish-
ing the neutral and selection models (Supplementary Fig. 36). A lower cutoff

of 0.08 was chosen empirically to satisfy the tradeoff between the number of
subclonal SSNVs and variant calling errors.
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and

KSD j =max|F, - Fy|

where F, is the cumulative SES of region a, in a pairwise comparison j between
regions a and b.
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e Thefirstis fHrs, the fraction of high frequency region-specific subclonal SSNVs out
of all region-specific subclonal SSNVs.

e Nextis fHsub, which is the fraction of subclonal SSNVs with high frequency (VAF >
0.2).

e KSD (Kolmogorov-Smirnov distance) - estimates the dissimilarity of the SFSs
between the two regions.

e FST (fixation index) - a measure of genetic divergence between the two regions.
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where fam is the VAF for SSNV m and d"z" is the sequencing depth for SSNV
minregion a. The genetic variance components (numerator and denominator)

are averaged separately to obtain a ratio combining the Hudson FST estimates
across all m, SSNV s34,



Methods - ITH metrics

e Thefirstis fHrs, the fraction of high frequency region-specific subclonal SSNVs out
of all region-specific subclonal SSNVs.

e Nextis fHsub, which is the fraction of subclonal SSNVs with high frequency (VAF >
0.2).

e KSD (Kolmogorov-Smirnov distance) - estimates the dissimilarity of the SFSs
between the two regions.

e FST (fixation index) - a measure of genetic divergence between the two regions.

e rAUC - The ratio of the area under the pooled cumulative SFS to the area under the
theoretical cumulative SFS assuming neutral growth in a well-mixed population. For
MRS, pooled VAF = #alternative alleles/total read depth.
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e A support vector machine classifier with a radial basis function (RBF)
kernel was trained on 1400 simulated tumors derived from 7
different growth models first 3 models labelled as “effectively

neutral” and the other 4 as “selection”, using 10-fold cross-validation
with the 5 ITH metrics as features.
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Methods - Evolutionary Mode Classifier

e A support vector machine classifier with a radial basis function (RBF)
kernel was trained on 1400 simulated tumors derived from 7
different growth models first 3 models labelled as “effectively
neutral” and the other 4 as “selection”, using 10-fold cross-validation
with the 5 ITH metrics as features.

e Hyperparameter optimization/Grid Search for optimizing RBF
parameters.

e Another SVM was trained on the ICs derived from ICA of the 5 ITH
metrics above.
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Results

e Tumors evolving neutrally and through strong positive selection show
fundamentally different patterns of intra-tumor heterogeneity, and these can be
distinguished through multi-region sequencing.
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Results of Spatial Simulation

Selection (s = 0.05)
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fundamentally different patterns of intra-tumor heterogeneity, and these can be
distinguished through multi-region sequencing.

e Patterns of ITH evaluated in several publicly available MRS datasets spanning
multiple tumor types.

o COAD - colorectal adenocarcinoma dataset ( taken > 3cm apart)
m Consists of 8 tumors W,M,G,N,U,O, and S.
m These samples were passed through the VAP :
e M, O,Ushowed ITH metrics comparable to virtual tumors under
neutral growth
e G,N,W, and S exhibited only slightly higher values, but
consistent with weak selection.
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Results

e Tumors evolving neutrally and through strong positive selection show
fundamentally different patterns of intra-tumor heterogeneity, and these can be
distinguished through multi-region sequencing.
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m Generated a type of cancerous COAD cell line and xenotransplanted
it into immune-compromised mice.

m Theresulting tumors were sequenced.



# of Mutations

290

180

60 0 60

180

290

Results

1

HCT116_S1 xenos

HCT116_S3 xenos

XA, 1021 SSNVs § . XA, 882 SSNVs
fHgy, = 0.191 fHg,, = 0.251
FST=0.08 B - FST=0.074
KSD = 0.156 . KSD=0.138
' H\ H i % ol H I
U 3] T[]
Public (689) > Public (597)
Pvt-Shared e Pvt-Shared
B Pvt-Rgn Specific = Pvt-Rgn Specific
XB , 1285 SSNVs § . XB , 1090 SSNVs

0

01 03 05 07 09 1
VAF

0

T

0.1

T T T L} Ll Al Al T
03 05 07 09 1
VAF

HCT116 xenografts

Single Cell . ’
S1O.

Tissue Culture

Expansion

Transplantation Transplantation



Results

e Tumors evolving neutrally and through strong positive selection show
fundamentally different patterns of intra-tumor heterogeneity, and these can be
distinguished through multi-region sequencing.

e Patterns of ITH evaluated in several publicly available MRS datasets spanning
multiple tumor types.

o COAD - colorectal adenocarcinoma dataset ( taken > 3cm apart)
o Invivo COAD xenograft

m Generated a type of cancerous COAD cell line and xenotransplanted
it into immune-compromised mice.

m Theresulting tumors were sequenced.



Results

e Tumors evolving neutrally and through strong positive selection show
fundamentally different patterns of intra-tumor heterogeneity, and these can be
distinguished through multi-region sequencing.

e Patterns of ITH evaluated in several publicly available MRS datasets spanning
multiple tumor types.

o COAD - colorectal adenocarcinoma dataset ( taken > 3cm apart)
o Invivo COAD xenograft



Results

e Tumors evolving neutrally and through strong positive selection show
fundamentally different patterns of intra-tumor heterogeneity, and these can be
distinguished through multi-region sequencing.

e Patterns of ITH evaluated in several publicly available MRS datasets spanning
multiple tumor types.

o COAD - colorectal adenocarcinoma dataset ( taken > 3cm apart)
o Invivo COAD xenograft
o Samples from 4 types of solid tumors.
m Additionally, for use as positive controls:
e 2tumors treated with a mutating agent known to impose
positive selective pressure

e Premalignant lesions (Barrett’s esophagus lesions) were also
used.
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Results

e Tumors evolving neutrally and through strong positive selection show
fundamentally different patterns of intra-tumor heterogeneity, and these can be
distinguished through multi-region sequencing.

e Patterns of ITH evaluated in several publicly available MRS datasets spanning
multiple tumor types.

o COAD - colorectal adenocarcinoma dataset ( taken > 3cm apart)
o Invivo COAD xenograft

o Samples from 4 types of solid tumors + 4 positive controls
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Results

e Tumors evolving neutrally and through strong positive selection show
fundamentally different patterns of intra-tumor heterogeneity, and these can be
distinguished through multi-region sequencing.

e Patterns of ITH evaluated in several publicly available MRS datasets spanning
multiple tumor types.

e |ITH metrics were calculated for all datasets, classified, and projected into model
space.

o ICA (independent component analysis) using the five ITH metrics identified
two distinct clusters, corresponding to selection with s>0.02.
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