1 Multi-state perfect phylogeny

Definition 1. A perfect phylogeny for M is a tree T with n leaves such that:

1. Each taxon labels exactly one leaf;
2. Each node $v \in V(T)$ is labeled by $\{0, \ldots, k-1\}^m$;
3. Nodes labeled with state $i \in \{0, \ldots, k-1\}$ for character c form a connected subtree $T_c(i)$.

In case $k=2$ and assuming an all-zero root node, we have the following theorem.

Theorem 1 (Perfect phylogeny theorem). Matrix $M \in \{0,1\}^{n \times m}$ has a perfect phylogeny if and only if no pair of columns c, d conflicts, i.e. contains binary pairs $(0,1); (1,0); \text{ and } (1,1)$.

For general k we have the following hardness result.

Theorem 2 (Bodlaender 1992). The multi-state perfect phylogeny problem is NP-complete.

1.1 Cladistic characters

A cladistic character c is defined by a tree S_c whose node set is given by $V(S_c) = \{s_0, \ldots, s_{k-1}\}$.

Definition 2. The reduced tree R_c of perfect phylogeny T with respect to character c has vertex set $V(R_c)$ and edge set $E(R_c)$ where

- $V(R_c) = \{X_0, \ldots, X_{k-1}\}$ such that $X_i = V(T_c(i))$,
- $(X_i, X_j) \in E(R_c)$ iff $i \neq j$ and there exists $u \in X_i$ and $v \in X_j$ such that $(u, v) \in E(T)$.

Definition 3. A perfect phylogeny T is consistent with cladistic character c provided that $(s_i, s_j) \in E(S_c)$ if and only if $(X_i, X_j) \in E(R_c)$.

We say that a perfect phylogeny T is consistent if it is consistent with all its cladistic characters.

Definition 4. The cladistic expansion function $h : \{1, \ldots, m\} \times \{0, \ldots, k-1\} \to \{0,1\}^k$ is defined as $h(c, p) = x^T$ where

$$
x_l = \begin{cases}
1, & \text{if } l \text{ is a descendant of } p, \\
0, & \text{otherwise.}
\end{cases}
$$

for all $0 \leq l < k$.
Definition 5. Given a matrix \(M = [a_{ij}] \in \{0, \ldots, k-1\}^{n \times m} \), its cladistic expansion \(M' \) is a \(n \times km \) binary matrix defined as

\[
\begin{pmatrix}
 h(1, a_{1,1}) & \cdots & h(n, a_{1,m}) \\
 \vdots & \ddots & \vdots \\
 h(1, a_{n,1}) & \cdots & h(n, a_{n,m})
\end{pmatrix}.
\]

Note that we can go from \(M \leftrightarrow M' \). Also, by Theorem 1 we have \(M' \leftrightarrow T' \). We now define \(T \leftrightarrow T' \).

Lemma 1. Let \(M \in \{0, \ldots, k-1\}^{n \times m} \). \(M \) admits a consistent perfect phylogeny if and only if \(M' \) is conflict-free.

Proof. (\(\Leftarrow \)) Let \(T' \) be the perfect phylogeny corresponding to \(M' \). Obtain \(T \) from \(T' \). We claim that \(T \) is a consistent perfect phylogeny for \(M \).

1+2. By definition of \(T \) (and the transformation).

3. Consider cladistic character \(c \) and state \(p \). Since \(T' \) is a perfect phylogeny, \(T' \) has exactly one edge labeled by \((c, p)\). Therefore all descendants of this edge whose immediate ancestor for \(c \) is labeled by \((c, p)\) form a subtree.

4. By definition of \(M' \).

(\(\Rightarrow \)) Let \(T \) be a consistent perfect phylogeny on \(M \). Obtain \(T' \) from \(T \). We claim that \(T' \) is a perfect phylogeny (on \(M' \)).

1+2. By definition of \(T' \) (and the transformation).

3. Suppose for a contradiction, that binary character \(d \) does not induce a connected subtree \(T'_d(1) \). Let \((c, p)\) be the corresponding cladistic character state pair.

Let \(u, v \in T'_d(1) \) be two distinct vertices whose (unique) outgoing arcs have target vertices that are not in \(T'_d(1) \). Let \(s \) and \(t \) be the states of \(u \) and \(v \), respectively. Since \(T \) is a perfect phylogeny, we have that \(s \neq t \). Therefore we can assume w.l.o.g. that \(s \neq p \). Hence, \(p < s \).

Let \(w \) be the unique parent of \(v \) and let \(q \) be its state for character \(c \). Note that \(w \) has state 0 for binary character \(d \). Thus, we have that \(q < s \). Since \(p < s \), \(w \) is the parent of \(v \) and \(S_c \) is a tree, we have that \(p < q < s \). The transformation however would have then resulted in a 1 for binary character \(d \) (recall, it corresponds to state \(p \) for character \(c \)). This is a contradiction.

\[\square\]

\[^1\text{Note that we can use state 1 without loss of generality, as } T'_d(0) \text{ is the complement of } T'_d(1).\]