HW 3 due Oct 29 by 11:59pm

Office hour after class in SC 3216
Outline

• Recap character-based phylogeny
• Application of small phylogeny maximum parsimony problem to cancer
• Compatibility

Reading:
• Lecture notes
Character-Based Tree Reconstruction

• Characters may be morphological features
 • Shape of beak \{generalist, insect catching, \ldots\}
 • Number of legs \{2, 3, 4, \ldots\}
 • Hibernation \{yes, no\}

• Character may be nucleotides/amino acids
 • \{A, T, C, G\}
 • 20 amino acids

• Values of a character are called states
 • We assume discrete states
Character-Based Phylogeny Reconstruction

Input characters → Output optimal tree

Question: What is optimal?

Want: Optimization criterion

Question: How to optimize this criterion?

Want: Algorithm
Character-Based Phylogeny Reconstruction: Criterion

Parsimony: minimize number of changes on edges of tree
Again, a Small and a Large Problem

Small Maximum Parsimony Phylogeny Problem:
Given \(m \times n \) matrix \(\mathbf{A} = [a_{i,j}] \) and tree \(T \) with \(m \) leaves, find assignment of character states to each internal vertex of \(T \) with minimum parsimony score.

Large Maximum Parsimony Phylogeny Problem:
Given \(m \times n \) matrix \(\mathbf{A} = [a_{i,j}] \), find a tree \(T \) with \(m \) leaves labeled according to \(\mathbf{A} \) and an assignment of character states to each internal vertex of \(T \) with minimum parsimony score.

Question: Are both problems easy (i.e. in P)?
Key observations: (1) Characters can be solved independently.
(2) Optimal substructure in subtrees.
Recurrence for Small Maximum Parsimony Problem

Small Maximum Parsimony Phylogeny Problem:
Given rooted tree T whose leaves are labeled by $\sigma : L(T) \rightarrow \Sigma$, find assignment of states to each internal vertex of T with minimum parsimony score.

Let $\mu(v, s)$ be the minimum number of mutations in the subtree rooted at v when assigning state s to v.

\[
\begin{align*}
\mu(v, s) &= \min \left\{ \begin{array}{ll}
\infty, & \text{if } v \in L(T) \text{ and } s \neq \sigma(v), \\
0, & \text{if } v \in L(T) \text{ and } s = \sigma(v), \\
\sum_{w \in \delta(v)} \min_{t \in \Sigma} \{c(s, t) + \mu(w, t)\}, & \text{if } v \notin L(T).
\end{array} \right.
\end{align*}
\]

Let $\delta(v)$ be the set of children of v.

\[
c(s, t) = \begin{cases}
0, & \text{if } s = t \\
1, & \text{if } s \neq t,
\end{cases}
\]

Let $\delta(v)$ be the set of children of v.

Filling out DP Table and Traceback

Let \(r(T) \) be the root vertex

Fill in the DP Table and Traceback

\[
\text{Fill}(T, \nu, s, \Sigma)\quad O(m|\Sigma|^2)
\]

if \(\nu \in \text{leaf}(T) \) then

for \(s \in \Sigma \)

if \(s = \sigma(\nu) \) then

\[m(\nu, s) = 0 \]

else

\[m(\nu, s) = \infty \]

end for

else

for \(w \in \delta(\nu) \) // children

\[m(\nu, s) = 0 \]

for \(s \in \delta(\nu) \)

\[m(\nu, s) = \min_{t \in \Sigma} \left(\sum_{c(s, t) + m(w, t)} + \right) \]

end for

end if

end if

for \(\nu \in \delta(\nu) \)

Backtrace \((T, w, \nu)\)

end for

Backtrace \((T, v, \mu)\)

if \(\nu = r(T) \)

\[\sigma(r(T)) = \arg \min_{s \in \Sigma} M(r(T), s) \]

else

let \(u \) be the parent of \(v \) and let \(s \) be the state

\[\sigma(v) = \arg \min_{s \in \Sigma} \left(\sum_{c(s, t) + m(\nu, t)} \right) \]

end if

end for

end for

Let \(r(T) \) be the root vertex
Outline

• Recap character-based phylogeny
• Application of small phylogeny maximum parsimony problem to cancer
• Compatibility

Reading:
• Lecture notes
Tumorigenesis: (i) Cell Mutation

Clonal Theory of Cancer
Nowell, 1976
Tumorigenesis: (i) Cell Mutation, (ii) Cell Division

Clonal Theory of Cancer
[Nowell, 1976]

Heterogeneous Tumor
Tumorigenesis: (i) Cell Division, (ii) Mutation & (iii) Migration
Tumorigenesis: (i) Cell Division, (ii) Mutation & (iii) Migration
Tumorigenesis: (i) Cell Division, (ii) Mutation & (iii) Migration

Cell Tree

Phylogenetic Tree T
Tumorigenesis: (i) Cell Division, (ii) Mutation & (iii) Migration

Goal: Given phylogenetic tree T, find *parsimonious* vertex labeling ℓ with fewest migrations

Minimum Migration Analysis in Ovarian Cancer

- Instance of the maximum parsimony small phylogeny problem [Fitch, 1971; Sankoff, 1975]

\[m = 7 \text{ anatomical sites} \]
Minimum Migration Analysis in Ovarian Cancer

- Instance of the maximum parsimony small phylogeny problem [Fitch, 1971; Sankoff, 1975]

\[\mu^* = 13 \]

\[m = 7 \text{ anatomical sites} \]
Minimum Migration History is **Not** Unique

- Enumerate all minimum-migration vertex labelings in the backtrace step

\[\mu^* = 13 \]
Comigrations: Simultaneous Migrations of Multiple Clones

- Multiple tumor cells migrate simultaneously through the blood stream [Cheung et al., 2016]
- Second objective: number γ of comigrations is the number of multi-edges in migration graph G†

$\mu^* = 13$
$\gamma = 10$

† Not necessarily true in the case of directed cycles
Comigrations: Simultaneous Migrations of Multiple Clones

- Multiple tumor cells migrate simultaneously through the blood stream [Cheung et al., 2016]
- Second objective: number \(\gamma \) of comigrations is the number of multi-edges in migration graph \(G^† \)

\[
\begin{align*}
\mu^* &= 13 \\
\gamma &= 10
\end{align*}
\]

\[
\begin{align*}
\mu^* &= 13 \\
\gamma &= 11
\end{align*}
\]

\[
\begin{align*}
\mu^* &= 13 \\
\gamma &= 7
\end{align*}
\]

\[
\begin{align*}
\mu^* &= 13 \\
\gamma &= 11
\end{align*}
\]

\[
\begin{align*}
\mu^* &= 13 \\
\gamma &= 7
\end{align*}
\]

\[
\begin{align*}
\mu^* &= 13 \\
\gamma &= 7
\end{align*}
\]

\[
\begin{align*}
\mu^* &= 13 \\
\gamma &= 7
\end{align*}
\]

- Not necessarily true in the case of directed cycles

ApC: Appendix
LFTB: Left Fallopian Tube
LOv: Left Ovary
RFTA: Right Fallopian Tube
ROv: Right Ovary
SBwl: Small Bowel
Om: Omentum
Constrained Multi-objective Optimization Problem

Parsimonious Migration History (PMH): Given a phylogenetic tree T and a set $\mathcal{P} \subseteq \{S, M, R\}$ of allowed migration patterns, find vertex labeling ℓ with minimum migration number $\mu^*(T)$ and smallest comigration number $\hat{\gamma}(T)$.

- **a** single-source seeding (S): $\mathcal{P} = \{S\}$
 \[(\mu^*, \hat{\gamma}) = (6, 2) \]
- **b** multi-source seeding (M): $\mathcal{P} = \{S, M\}$
 \[(\mu^*, \hat{\gamma}) = (5, 3) \]
- **c** reseeding (R): $\mathcal{P} = \{S, M, R\}$
 \[(\mu^*, \hat{\gamma}) = (4, 4) \]

Parsimonious Migration History (PMH): Given a phylogenetic tree T and a set $\mathcal{P} \subseteq \{S, M, R\}$ of allowed migration patterns, find vertex labeling ℓ with minimum migration number $\mu^*(T)$ and smallest comigration number $\hat{\gamma}(T)$.

Theorem 1: PMH is NP-hard when $\mathcal{P} = \{S\}$

Theorem 2: PMH is fixed parameter tractable in the number m of locations when $\mathcal{P} = \{S\}$
PMH is NP-hard when $\mathcal{P} = \{S\}$

3-SAT: Given $\varphi = \land_{i=1}^{k}(y_{i,1} \lor y_{i,2} \lor y_{i,3})$ with variables $\{x_1, ..., x_n\}$ and k clauses, find $\phi : [n] \rightarrow \{0,1\}$ satisfying φ

$$\Sigma = \{x_1, ..., x_n, \neg x_1, ..., \neg x_n, c_1, ..., c_k, \bot\}$$
PMH is NP-hard when $\mathcal{P} = \{S\}$

3-SAT: Given $\varphi = \wedge_{i=1}^{k} (y_{i,1} \lor y_{i,2} \lor y_{i,3})$ with variables $\{x_1, \ldots, x_n\}$ and k clauses, find $\phi: [n] \rightarrow \{0,1\}$ satisfying φ

Three ideas:

1. Ensure that $(x, \neg x) \in E(G)$ or $(\neg x, x) \in E(G)$

2. Ensure that $\ell^*(r(T)) = \bot$

3. Ensure that φ is satisfiable if and only if ℓ^* encodes a satisfying truth assignment
PMH is NP-hard when $\mathcal{P} = \{S\}$

3-SAT: Given $\varphi = \bigwedge_{i=1}^{k} (y_{i,1} \lor y_{i,2} \lor y_{i,3})$
with variables $\{x_1, ..., x_n\}$ and k clauses, find $\phi : [n] \to \{0,1\}$ satisfying φ

$\Sigma = \{x_1, ..., x_n, \neg x_1, ..., \neg x_n, c_1, ..., c_k, \bot\}$

Three ideas:

1. Ensure that $(x, \neg x) \in E(G)$
or $(\neg x, x) \in E(G)$
2. Ensure that $\ell^* \left(r(T) \right) = \bot$
3. Ensure that φ is satisfiable if and only if ℓ^* encodes a satisfying truth assignment

Lemma: Let $B > 10k + 1$ and $A > 2Bn + 27k$.
Then, φ is satisfiable if and only if $\mu^* (T) = (B + 1)n + 25k$
PMH is NP-hard when $\mathcal{P} = \{S\}$

$\varphi = (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1, \neg x_2, \neg x_3)$

$k = 2, n = 3$

$B = 10k + 2 = 22$

$A = 2Bn + 27k + 1 = 187$

$\Sigma = \{x_1, x_2, x_3, \neg x_1, \neg x_2, \neg x_3, c_1, c_2, \bot\}$

Lemma: Let $B > 10k + 1$ and $A > 2Bn + 27k$.

Then, φ is satisfiable if and only if $\mu^*(T) = (B + 1)n + 25k$.
Lemma: If there exists labeling ℓ consistent with \hat{G} then

$$d_T(u, v) \geq d_{\hat{G}}(\text{lca}_{\hat{G}}(u), \hat{\ell}(v)) \quad \forall u, v \in V(T) \text{ such that } u \preceq_T v. \quad (1)$$

$$\ell^*(v) = \begin{cases} \text{lca}_{\hat{G}}(r(T)), & \text{if } v = r(T), \\ \sigma(\ell^*(\pi(v)), \text{lca}_{\hat{G}}(v)), & \text{if } v \neq r(T), \end{cases}$$

where $\sigma(s, t) = s$ if $s = t$ and otherwise $\sigma(s, t)$ is the unique child of s that lies on the path from s to t in \hat{G}.

Lemma: If (1) holds then ℓ^* is a minimum migration labeling consistent with \hat{G}.

PMH is FPT in number m of locations when $\mathcal{P} = \{S\}$.
PMH is FPT in number m of locations when $\mathcal{P} = \{S\}$

Lemma: If there exists labeling ℓ consistent with \hat{G} then

$$d_T(u, v) \geq d_{\hat{G}}(\text{lca}_{\hat{G}}(u), \hat{\ell}(v)) \quad \forall u, v \in V(T) \text{ such that } u \preceq_T v. \quad (1)$$

$$\ell^*(v) = \begin{cases}
\text{lca}_{\hat{G}}(r(T)), & \text{if } v = r(T), \\
\sigma(\ell^*(\pi(v)), \text{lca}_{\hat{G}}(v)), & \text{if } v \neq r(T),
\end{cases}$$

where $\sigma(s, t) = s$ if $s = t$ and otherwise $\sigma(s, t)$ is the unique child of s that lies on the path from s to t in \hat{G}.

Lemma: If (1) holds then ℓ^* is a minimum migration labeling consistent with \hat{G}.

$O(nm^m)$ time
Simulations

Available on: https://github.com/elkebir-group/PMH-S
Outline

• Recap character-based phylogeny
• Application of small phylogeny maximum parsimony problem to cancer
• Compatibility

Reading:
• Lecture notes
Maximum Parsimony

Small Maximum Parsimony Phylogeny Problem:
Given $m \times n$ matrix $A = [a_{i,j}]$ and tree T with m leaves, find
assignment of character states to each internal vertex of T
with minimum parsimony score.

Large Maximum Parsimony Phylogeny Problem:
Given $m \times n$ matrix $A = [a_{i,j}]$, find a tree T with m leaves labeled
according to A and an assignment of character states to each internal
vertex of T with minimum parsimony score.
Binary Characters

<table>
<thead>
<tr>
<th>Species</th>
<th>Characters</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Characters only have two possible states

Possible Encoding:
- 0 : not-mutated
- 1 : mutated

Possible Encoding:
- 0 : no wings
- 1 : wings
Binary Characters

Characters only have two possible states

<table>
<thead>
<tr>
<th>Species</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Possible Encoding:
- 0: not-mutated
- 1: mutated

Possible Encoding:
- 0: no wings
- 1: wings

Question: Given n binary characters, what is the smallest parsimony score?
Somatic Mutations and Cancer

“typical tumor”: ~10 driver mutations
100’s – 1000’s of passenger mutations
Somatic Mutations and Cancer

Clonal theory of cancer (Nowell, 1976)

“typical tumor”: ~10 driver mutations
100’s – 1000’s of passenger mutations

Sequence genome
Progression of Somatic Mutations

Single nucleotide mutation
... CGTAATTAG ...
... CGTCATTAG ...

0 = normal
1 = mutated

Root is the normal, founder cell and leaves are cells in tumor.
Progression of Somatic Mutations

Single nucleotide mutation

... CGTAATTAG ...

... CGTCATTAG ...

0 = normal
1 = mutated

Root is the normal, founder cell and leaves are cells in tumor.

Infinite sites assumption: each locus mutates only once.
Infinite Sites Model

The genome is large

Mutations are rare

Infinite sites model: multiple mutations never occur at the same position

Mutated Loci

<table>
<thead>
<tr>
<th>Species</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species (cancer cells)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

1: mutated
0: not

All sites are bi-allelic: mutated or not.

[Kimura, 1969]
Two-state Perfect Phylogeny

Matrix $M \in \{0, 1\}^{n \times m}$ has n taxa and m characters

- Taxon f has state 1 for character c if f possesses character c

<table>
<thead>
<tr>
<th></th>
<th>c_1</th>
<th>c_2</th>
<th>c_3</th>
<th>c_4</th>
<th>c_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>r_2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>r_3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>r_4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>r_5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Definition

A perfect phylogeny for M is a rooted tree T with n leaves such that:

1. Each taxon labels only one leaf
2. Each character labels only one edge
3. Character possessed by a taxon are on unique path to root

Root node is all zero ancestor
Two-state Perfect Phylogeny – Alternative Definitions

1. Each taxon labels exactly one leaf
2. Each character labels exactly one edge
3. Character possessed by a taxon are on unique path to root

1. Each taxon labels exactly one leaf
2. Each node is labeled by \(\{0, 1\}^m\)
3. Nodes labeled with state \(i\) for character \(c\) form a connected subtree

1. Each taxon labels exactly one leaf
2. \(T_c(i)\) is smallest subtree connecting all leaves labeled with state \(i\) for character \(c\)
3. \(T_c(0)\) and \(T_c(1)\) are disjoint for all \(c\)
Two-state Perfect Phylogeny Problem

Input:

Matrix $M \in \{0, 1\}^{n \times m}$ has n taxa and m characters

- Taxon f has state 1 for character c $\iff f$ possesses character c

<table>
<thead>
<tr>
<th></th>
<th>c_1</th>
<th>c_2</th>
<th>c_3</th>
<th>c_4</th>
<th>c_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>r_2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>r_3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>r_4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>r_5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Problem

Given $M \in \{0, 1\}^{n \times m}$ does M have a perfect phylogeny?
Try it yourself!

Only one of these matrices can be used to build a perfect phylogeny.

1. As a group, **decide on an approach** to try to determine which one is which.
2. Try out your approach to see if you can construct the tree.
3. What did you learn from your attempt?

\[I(c) \text{ is the set of taxa possessing } c \text{, i.e. } \forall c, d \in [n] : \]
\[(1) I(c) \leq I(d), \text{ or } \]
\[(2) I(d) \leq I(c), \text{ or } \]
\[(3) I(c) \cap I(d) = \emptyset \]

\[I(A) = \{ C, E \} \]

\[M_1 = \begin{pmatrix}
A & 0 & 1 & 0 & 0 & 0 \\
B & 0 & 0 & 1 & 0 & 0 \\
C & 1 & 1 & 0 & 0 & 0 \\
D & 0 & 0 & 1 & 1 & 0 \\
E & 1 & 1 & 0 & 0 & 1 \\
\end{pmatrix} \]

\[M_2 = \begin{pmatrix}
A & 0 & 0 & 1 & 1 & 0 \\
B & 0 & 0 & 1 & 0 & 1 \\
C & 1 & 1 & 0 & 0 & 1 \\
D & 1 & 1 & 0 & 0 & 0 \\
E & 0 & 1 & 0 & 0 & 1 \\
\end{pmatrix} \]
The Perfect Phylogeny Problem – Preliminaries

Problem

Given \(M \in \{0, 1\}^{n \times m} \) does \(M \) have a perfect phylogeny?

Definition

\(I(c) \) is the set of taxa that possess character \(c \); and \(\sigma(f) \) is the set of characters possessed by taxon \(f \).

\[
\begin{array}{ccccc}
 & c_1 & c_2 & c_3 & c_4 & c_5 \\
 r_1 & 1 & 1 & 0 & 0 & 0 \\
r_2 & 0 & 0 & 1 & 0 & 0 \\
r_3 & 1 & 1 & 0 & 0 & 1 \\
r_4 & 0 & 0 & 1 & 1 & 0 \\
r_5 & 0 & 1 & 0 & 0 & 0 \\
\end{array}
\]

\[
\begin{array}{cccccc}
 & c_1 (2) & c_2 (1) & c_3 (3) & c_4 (5) & c_5 (4) \\
r_1 & 1 & 1 & 0 & 0 & 0 \\
r_2 & 0 & 0 & 1 & 0 & 0 \\
r_3 & 1 & 1 & 0 & 1 & 0 \\
r_4 & 0 & 0 & 1 & 0 & 1 \\
r_5 & 1 & 0 & 0 & 0 & 0 \\
\end{array}
\]

\[I(c_1) = \{r_1, r_3\} \]
\[\sigma(r_1) = \{c_1, c_2\} \]

Sort columns of \(M \) s.t. \(c < d \) iff \(|I(c)| \geq |I(d)| \). Break ties arbitrarily.
Consider rows of M iteratively
- T_i is tree of first i rows of M

T_1 is a path graph
- Terminal nodes r and 1
- $|\sigma(1)| + 1$ edges labeled by $\sigma(1)$

<table>
<thead>
<tr>
<th></th>
<th>c_1</th>
<th>c_2</th>
<th>c_3</th>
<th>c_4</th>
<th>c_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>r_2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>r_3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>r_4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>r_5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Consider rows of M iteratively

- T_i is tree of first i rows of M

T_1 is a path graph

- Terminal nodes r and 1
- $|\sigma(1)| + 1$ edges labeled by $\sigma(1)$

T_{i+1} is a supertree of T_i

- Let v be last node on walk from r matching characters $\sigma(i + 1)$
 - Character d is the last match
 - Unmatched characters $\tau(i + 1)$

\[
\begin{array}{cccccc}
| & c_1 & c_2 & c_3 & c_4 & c_5 \\
\hline
r_1 & 1 & 1 & 0 & 0 & 0 \\
r_2 & 0 & 0 & 1 & 0 & 0 \\
r_3 & 1 & 1 & 0 & 1 & 0 \\
r_4 & 0 & 0 & 1 & 0 & 1 \\
r_5 & 1 & 0 & 0 & 0 & 0 \\
\end{array}
\]
Consider rows of M iteratively
- T_i is tree of first i rows of M

T_1 is a path graph
- Terminal nodes r and 1
- $|\sigma(1)| + 1$ edges labeled by $\sigma(1)$

T_{i+1} is a supertree of T_i
- Let v be last node on walk from r matching characters $\sigma(i+1)$
 - Character d is the last match
 - Unmatched characters $\tau(i+1)$
- Extend T_i with path Π
 - Π has terminals v and $i+1$
 - Π has $|\tau(i+1)| + 1$ edges labeled by $\tau(i+1)$

$c < d$ iff $|l(c)| \geq |l(d)|$

<table>
<thead>
<tr>
<th></th>
<th>c_1</th>
<th>c_2</th>
<th>c_3</th>
<th>c_4</th>
<th>c_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>r_2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>r_3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>r_4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>r_5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Consider rows of M iteratively
 - T_i is tree of first i rows of M

T_1 is a path graph
 - Terminal nodes r and 1
 - $|\sigma(1)| + 1$ edges labeled by $\sigma(1)$

T_{i+1} is a supertree of T_i
 - Let ν be last node on walk from r
 matching characters $\sigma(i+1)$
 - Character d is the last match
 - Unmatched characters $\tau(i+1)$
 - Extend T_i with path Π
 - Π has terminals ν and $i + 1$
 - Π has $|\tau(i+1)| + 1$ edges labeled by $\tau(i+1)$

\[c < d \text{ iff } |I(c)| \geq |I(d)|\]
Consider rows of M iteratively
- T_i is a tree of first i rows of M

T_1 is a path graph
- Terminal nodes r and 1
- $|\sigma(1)| + 1$ edges labeled by $\sigma(1)$

T_{i+1} is a supertree of T_i
- Let v be last node on walk from r
 - Matching characters $\sigma(i + 1)$
 - Character d is the last match
 - Unmatched characters $\tau(i + 1)$
- Extend T_i with path Π
 - Π has terminals v and $i + 1$
 - Π has $|\tau(i + 1)| + 1$ edges labeled by $\tau(i + 1)$

Lemma

Let $M_i \in 0, 1^{i \times m}$ be a submatrix of M. If M is conflict-free then T_i is a perfect phylogeny for M_i.
Outline

• Recap character-based phylogeny
• Application of small phylogeny maximum parsimony problem to cancer
• Compatibility

Reading:
• Lecture notes

HW 3 due Oct 29 by 11:59pm