

CS 466
Introduction to Bioinformatics

Lecture 8

Mohammed El-Kebir
September 20, 2019

Course Announcements

Instructor:
• Mohammed El-Kebir (melkebir)
• Office hours: Wednesdays, 3:15-4:15pm

TA:
• Ashwin Ramesh (aramesh7)
• Office hours: Fridays, 11:00-11:59am in SC 3405

3

Homework 2 will be released 9/24 and will be due 10/2, 11:59pm

Outline
• Progressive alignment

• Current methods

• Tree and star alignment

Reading:
• Material based on Chapter 14.6 in book “Algorithms on Strings, Trees and

Sequences” by Dan Gusfield
• Lecture notes

4

Heuristic: Iterative/Progressive Alignment

5

Heuristic Approach: Merge Pairwise Alignments

6

Question:
Can we align two

alignments?

Need a way to summarize
an alignment and score

merged alignments

Profile Representation of Multiple Alignment

7

A profile 𝑃 = [𝑝%,'] is a Σ + 1 × 𝑙 matrix,
where 𝑝%,' is the frequency of 𝑖-th letter in 𝑗-th position of alignment

Profile Representation of Multiple Alignment

8

We know how to align
sequence against sequence

Question: Can we align
sequence against profile?

Question: Can we align profile
against profile?

Aligning String to Profile

9

Given: Sequences 𝐯 = 𝑣2, … , 𝑣4 and profile 𝑃 with 𝑛 columns

A profile 𝑃 = [𝑝%,'] is a (Σ + 1) × 𝑛 matrix,
where 𝑝%,' is the frequency of 𝑖-th letter in 𝑗-th position of alignment

• 𝑠[𝑖, 𝑗] is optimal alignment of 𝑣2, … , 𝑣% and first 𝑗 columns of 𝑃
• 𝛿(𝑥, 𝑦) is score for aligning characters 𝑥 and 𝑦
• 𝜏(𝑥, 𝑗) is score for aligning character 𝑥 and column 𝑗 of 𝑃

Aligning String to Profile

10

⌧(x, j) =
X

y2⌃[{�}

py,j · �(x, y)

s[i, j] = max

8
>>><

>>>:

0, if i = 0 and j = 0,

s[i� 1, j] + �(vi,�), if i > 0,

s[i, j � 1] + ⌧(�, j), if j > 0,

s[i� 1, j � 1] + ⌧(vi, j), if i > 0 and j > 0.

• 𝑠[𝑖, 𝑗] is optimal alignment of 𝑣2, … , 𝑣% and first 𝑗 columns of 𝑃
• 𝛿(𝑥, 𝑦) is score for aligning characters 𝑥 and 𝑦
• 𝜏(𝑥, 𝑗) is score for aligning character 𝑥 and column 𝑗 of 𝑃

Insert space in profile

Insert space in string

Progressive Multiple Alignment: Greedy Algorithm

11

Choose most similar pair among k input strings, combine into a
profile. This reduces the original problem to alignment of k-1
sequences to a profile. Repeat.

Example

12

Score of +1 for matches, -1 otherwise.

Example

13

Score of +1 for matches, -1 otherwise.

Question: Any theoretical
guarantees on optimality? No guarantees!

Outline
• Progressive alignment

• Current methods

• Tree and star alignment

Reading:
• Material based on Chapter 14.6 in book “Algorithms on Strings, Trees and

Sequences” by Dan Gusfield
• Lecture notes

14

Progressive Alignment – Feng and Doolittle (1987)

15

1. Compute pairwise sequence
alignments of 𝑛 sequences

2. Generate complete graph
𝐺 = (𝑉, 𝐸) with edge weights 𝑤 ∶
𝐸 → ℝ

3. Compute a (rooted) minimum
spanning tree 𝑇 of 𝐺

4. Perform sequence-sequence,
sequence-alignment and alignment-
alignment alignment to construct
MSA according to guide tree 𝑇
(from most similar to least similar)

‘Once a gap, always a gap’

Minimum spanning tree is a
tree 𝑇 spanning all vertices of 𝐺

with minimum total weight

𝐺 = (𝑉, 𝐸)

𝑇

Progressive Alignment – ClustalW (1994)
• Widely used alignment method by Thompson, Higgins and Gibson (1994)
• W stands for weighted:

• Input sequences are weighted to compensate for biased representation
• Different substitution matrices depending on expected similarity in guide tree

(BLOSUM80 for closely related sequences, and BLOSUM50 for distant sequences)
• Position-specific gap-open and gap-extend penalties depending on context

(hydrophobic vs. hydrophilic)

Three steps:
1. Construct pairwise alignments
2. Build guide tree 𝑇 using neighbor joining*
3. Progressive profile alignment guided by 𝑇

16

ClustalW – Step 2: Guide Tree

17

ClustalW – Step 3: Progressive Alignment

18

MUSCLE (Edgar, 2004)
Multiple Sequence Comparison by Log-Expectation

Three phases:
1. Draft progressive alignment: fast heuristic
2. Improved progressive: use tree derived in phase 1
3. Refinement of MSA

• Remove sequence from MSA
and realign to profile
of remaining sequences
• Repeat until convergence

19

Progressive MSA

20

Outline
• Progressive alignment

• Current methods

• Tree and star alignment

Reading:
• Material based on Chapter 14.6 in book “Algorithms on Strings, Trees and

Sequences” by Dan Gusfield
• Lecture notes

21

Tree Alignment

22

Summary
1. Optimal pairwise alignment by dynamic programming in 𝑂(𝑛F) time
2. Optimal multiple alignment with SP-score by dynamic programming in

𝑂(𝑘F2I𝑛I) time
3. Multiple alignment with SP-score is NP-hard (Jiang and Wang, 1994)
4. Carrillo-Lipman enables us to decide whether alignment passes through a

vertex 𝑖2, 𝑖F, 𝑖J for 𝑘 = 3 sequences (generalizes to 𝑘 > 3)
5. Progressive alignment methods are widely used, but come with no

theoretical bounds on alignment quality
6. Star alignment gives 2-approximation algorithm

23

History
• 1975 Sankoff

Formulated MSA problem and gave dynamic programming solution
• 1988 Carrillo-Lipman

Branch and Bound approach for MSA
• 1990 Feng-Doolittle

Progressive alignment
• 1993 Gusfield

Star alignment: 2-approximation algorithm
• 1994 Jiang and Wang

MSA with SP-score is NP-hard
• 1994 Thompson-Higgins-Gibson: ClustalW

Most popular multiple alignment program
• 2000 Notredam-Higgins-Heringa: T-coffee

Use library of pairwise alignments
• 2004 Edgar: MUSCLE

Refinement

24

