
CS 466 – Introduction to Bioinformatics
Lectures 21-23

Mohammed El-Kebir

November 13, 2019

Document history:

• 11/07/2018: Initial version

• 11/08/2018: Fixed various typos and inconsistencies.

• 11/11/2018: Forward algorithm.

• 11/12/2018: Backward algorithm.

• 11/14/2018: Derivation of marginal probability using backward algorithm, posterior
decoding, learning problem.

• 11/16/2018: Updated Baum-Welch to use marginal probability rather than joint prob-
ability. Updated reasoning for base case of backward algorithm.

• 11/6/2019: Fixed typo in derivation.

Contents

1 Hidden Markov Models 2

2 Viterbi Algorithm: Most Probable State Path 3

3 Forward Algorithm 4

4 Backward Algorithm 5

5 Posterior Decoding 7

6 Learning Problem 7

Note: These notes are based on Ref. [1] and the lectures notes by Serafim Batzoglou on
this topic. For the sake of a clear exposition, I omitted termination probabilities.

1

1 Hidden Markov Models

Fair bet casino. Suppose you are in a casino, betting on whether the outcome of a coin flip
is heads or tails. The crooked dealer changes between a fair and biased coin with probability
0.10. With the fair coin, heads and tails have equal probability of 0.5. With the biased coin,
however, the probability of heads is 0.75 and the probability of tails is 0.25. Can we catch
the crooked dealer?

Markov model. To answer this question, let’s resort to math. We start by defining a
Markov model M as a pair (Q,A) consisting of a set Q of states and transition probabilities
A = [as,t] between all pairs (s, t) ∈ Q × Q of states. For our purposes, we will consider a
finite state set Q. Coming back to our example, we have Q = {fair, biased}. Matrix A is the
transition matrix with nonnegative entries and each row s of A summing to 1, i.e. as,t ≥ 0

for all pairs (s, t) ∈ Q × Q, and
|Q|

t=1 as,t = 1 for all states s ∈ Q. For instance, in the fair
bet casino we have that afair,biased = abiased,fair = 0.1 and that afair,fair = abiased,biased = 0.9.

The main use of a Markov model (or chain) is to evaluate the probability Pr(π) of a state
path π = π1, . . . , πn, where πi ∈ Q for each i ∈ [n]. Using the chain rule1, we have

Pr(π) = Pr(π1, . . . , πn) = Pr(πn | πn−1, . . . , π1) Pr(πn−1 | πn−2, . . . , π1) . . .Pr(π1). (1)

The key property that we use in computing this probability is the Markov property, which
states that the next state depends only on the current state and not any of the previous
states. That is, Pr(πi | πi−1, . . . , π1) = Pr(πi | πi−1) = aπi−1,πi

. Thus, we have

Pr(π) = Pr(π1, . . . , πn) = Pr(πn | πn−1, . . . , π1) Pr(πn−1 | πn−2, . . . , π1) . . .Pr(π1) (2)

= Pr(πn | πn−1) Pr(πn−1 | πn−2) . . .Pr(π2 | π1) Pr(π1) (3)

= Pr(π1)
n

i=2

aπi−1,πi
(4)

= a0,π1

n

i=2

aπi−1,πi
. (5)

Observe that a0,s is the initial probability Pr(π1 = s) of starting in state s ∈ Q. That is,

a0,s ≥ 0 for all s ∈ Q and
|Q|

s=1 a0,s = 1. Thus, A is an (|Q| + 1) × |Q| matrix. Setting
π0 = 0, we rewrite the above equation as

Pr(π) =
n

i=1

aπi−1,πi
. (6)

Hidden Markov model. Given a state path π and Markov model M = (Q,A) it is
trivial to compute Pr(π). In practice, we are not given π = π1, . . . , πn but rather a sequence
x = x1, . . . , xn of symbols that were emitted in each state πi. More formally, we are given
a set Σ of symbols and emission probabilities E = [es,k] whose entries es,k indicate the

1Repeated application of Pr(A,B) = Pr(A | B) Pr(B).

2

probability of emitting symbol k in state s. A hidden Markov model (HMM) is a four-tuple
M = (Q,A,Σ, E). It is convenient to think of an HMM M = (Q,A,Σ, E) as generative
model, given M and a state path π, we generate a symbol sequence x = x1, . . . , xn using
emission probabilities E. That is, the probability of generating symbol s in state πi is
precisely eπi,s. Thus, the joint probability of a symbol sequence x and state path π is
computed as

Pr(x,π) = Pr(x1, π1, . . . , xn, πn) (7)

= Pr(xnπn | xn−1, πn−1, . . . , x1, π1) . . .Pr(x2π2 | x1π1) Pr(x1π1) (8)

= Pr(xnπn | πn−1) . . .Pr(x2π2 | π1) Pr(x1 | π1) Pr(π1) (9)

=
n

i=1

eπi,xi
· aπi−1,πi

. (10)

In practice, the state path π that generated the symbol sequence x is hidden to us (hence
the name).

Three questions. Given M = (Q,A,Σ, E), we are interested in the following three ques-
tions.

1. What is the most probable state path π∗ that generated a given symbol sequence x?
That is, find π∗ = argmaxπ Pr(x,π).

2. What is the probability Pr(x) =

π Pr(x,π)?

3. What is the posterior probability that the i-th observation came from state s given the
observed symbol sequence x? That is, compute Pr(πi = s | x).

Using the fair bet casino example, question 1 would be to determine for each coin flip
whether the crooked dealer used the fair or biased coin. An example of question 2, would be
to compute the probability of observing n times heads in a row (not caring about whether the
dealer was cheating or not), i.e. Pr(x1 = H, . . . xn = H). Finally, question 3 seeks to answer
whether the dealer cheated at time i given n heads/tails observations x, i.e. Pr(πi = B | x).
We will solve these three questions using different algorithms. The key observation is that
the Markov property leads to optimal substructure in each of these questions, thus enabling
the use of dynamic programming.

2 Viterbi Algorithm: Most Probable State Path

We are interested in identifying π∗ ∈ Qn with maximum likelihood Pr(x,π∗). From (7), we
immediately observe optimal substructure. Thus, we define xi = x1, . . . , xi, π

∗
i = π∗

1, . . . , π
∗
i .

Let v[s, i] denote the probability Pr(xi,π
∗
i−1, πi = s), i.e. the probability of the most probable

state path of the first i observations with final state πi = s. Clearly,

Pr(x,π∗) = max
s∈Q

Pr(xn,π
∗
n−1, πn = s) = max

s∈Q
v[s, n]. (11)

3

Initially, v[s, 1] = a0,ses,x1 for all states s ∈ Q. We derive the step i > 1 as follows.

v[s, i] = Pr(xi,π
∗
i−1, πi = s) (12)

= Pr(x1, . . . , xi−1, xi, π
∗
1, . . . , π

∗
i−1, πi = s) (13)

= Pr(xi, πi = s | x1, . . . , xi−1, π
∗
1, . . . , π

∗
i−1) Pr(x1, . . . , xi−1, π

∗
1, . . . , π

∗
i−1) (14)

= Pr(xi, πi = s | π∗
i−1) Pr(x1, . . . , xi−1, π

∗
1, . . . , π

∗
i−1) (15)

= max
t∈Q

Pr(xi, πi = s | πi−1 = t) Pr(x1, . . . , xi−1, π
∗
1, . . . , π

∗
i−2, πi−1 = t) (16)

= max
t∈Q

Pr(xi, | πi = s, πi−1 = t) Pr(πi = s | πi−1 = t) · v[t, i− 1] (17)

= max
t∈Q

Pr(xi, | πi = s) · at,s · v[t, i− 1] (18)

= max
t∈Q

es,xi
· v[t, i− 1] · at,s (19)

= es,xi
max
t∈Q

v[t, i− 1] · at,s. (20)

Thus, we have the following recurrence.

v[s, i] =

a0,ses,x1 , if i = 1,

es,xi
maxt∈Q v[t, i− 1] · at,s, if i > 1.

(21)

We view v as an |Q|× (n+1) table, where the entries of the first column are 1. From the
recurrence, we see that the rest of this table can be filled out column-by-column. Each entry
in column i > 0 requires lookups of all |Q| entries in the preceding column i− 1. Thus, the
running time is O(n|Q|2). We obtain the final maximum likelihood Pr(x,π∗) and hidden
state πn from the completed table by scanning through the last column n and identifying the
state s ∈ Q with largest likelihood v[s, n] and setting πn = s. We obtain the corresponding
maximum likelihood state path π∗ by back tracking from (πn, n). This algorithm is known
as the Viterbi algorithm.

3 Forward Algorithm

We are interested in the probability Pr(x), the probability of observing a given symbol
sequence x = x1, . . . , xn marginalizing over all combinations of hidden states π = π1, . . . , πn.
That is,

Pr(x) =

π

Pr(x,π) =

(π1,...,πn)

Pr(x1, π1, . . . , xn, πn) =

(π1,...,πn)

n

i=1

eπi,xi
· aπi−1,πi

. (22)

There are |Q|n possible state paths π = (π1, . . . , πn). Thus, computing Pr(x) by brute
force takes O(n|Q|n) time, where the linear factor n is the time required to compute Pr(x,π).
Can we do better than exponential time?

Alternatively, we can approximate Pr(x) by the probability Pr(x,π∗) where π∗ is the
state path identified by the Viterbi algorithm in O(n|Q|2) time. The underlying assumption
is that most of the probability mass is contributed by the most probable state path π∗.

4

However, this is an approximation. We will describe an exact algorithm for computing
Pr(x) with the same running time of O(n|Q|2) as the Viterbi algorithm.

Recall that xi = x1, . . . , xi, πi = π1, . . . , πi. Let f [s, i] denote the probability of observing
xi = (x1, . . . , xi) and that πi = s. That is,

Pr(xi, πi = s) = Pr(x1, . . . , xi, πi = s) = f [s, i]. (23)

Clearly,

Pr(x) = Pr(x1, . . . , xn) =

s∈Q

Pr(x1, . . . , xn, πn = s) =

s∈Q

f [s, n]. (24)

Recalling that x1 = x1 is the singleton sequence, we have that f [s, 1] = Pr(x1, π1 = s) =
a0,ses,x1 initially. We derive the step i > 1 as follows.

f [s, i] = Pr(xi, πi = s) = Pr(x1, . . . , xi, πi = s) (25)

=

(π1,...,πi−1)

Pr(x1, . . . , xi−1, xi, π1, . . . , πi−1, πi = s) (26)

=

(π1,...,πi−1)

Pr(x1, . . . , xi−1, π1, . . . , πi−1, πi = s) · es,xi
(27)

=

t∈Q

(π1,...,πi−2)

Pr(x1, . . . , xi−1, π1, . . . , πi−2, πi−1 = t) · at,s · es,xi
(28)

=

t∈Q

Pr(x1, . . . , xi−1, πi−1 = t) · at,s · es,xi
(29)

=

t∈Q

f [t, i− 1] · at,s · es,xi
(30)

= es,xi

t∈Q

f [t, i− 1] · at,s. (31)

Hence, we have the following recurrence.

f [s, i] =

a0,ses,x1 , if i = 1,

es,xi

t∈Q{f [t, i− 1] · at,s}, if i > 1.

(32)

We compute f in exactly the same way as v, thus requiring O(n|Q|2) time. The prob-
ability Pr(x) that we seek is obtained by summing the entries in the last column, i.e.
Pr(x) =

s∈Q f [s, n].

4 Backward Algorithm

How do we compute the posterior probability Pr(πi = s | x)? From probability theory, we
have

Pr(πi = s | x) = Pr(x, πi = s)

Pr(x)
. (33)

5

We know how to compute Pr(x) using the forward algorithm, but how do we compute
Pr(x, πi = s)? We have that

Pr(x, πi = s) = Pr(x1, . . . , xn, πi = s) (34)

= Pr(x1, . . . , xi, πi = s) Pr(xi+1, . . . , xn | x1, . . . , xi, πi = s) (35)

= f [s, i] · Pr(xi+1, . . . , xn | πi = s). (36)

Let b[s, i] denote the probability Pr(xi+1, . . . , xn | πi = s). Thus,

Pr(x, πi = s) = f [s, i] · b[s, i]. (37)

Recall that the set Ω is the sample space, the space of all possible events. Initially,

b[s, n] = Pr(xn+1, . . . , xn | πi = s) = Pr(Ω | πn = s) =
Pr(Ω, πn = s)

Pr(πn = s)
=

Pr(πn = s)

Pr(πn = s)
= 1.

(38)

As for the step, we have

b[s, i] = Pr(xi+1 | πi = s) = Pr(xi+1, . . . , xn | πi = s) (39)

=

(πi+1,...,πn)

Pr(xi+1, . . . , xn, πi+1, . . . , πn | πi = s) (40)

=

t∈Q

(πi+2,...,πn)

Pr(xi+1, . . . , xn, πi+1 = t, . . . , πn | πi = s) (41)

=

t∈Q

(πi+2,...,πn)

Pr(xi+1, πi+1 = t, xi+2, . . . , xn, πi+2, . . . , πn | πi = s) (42)

=

t∈Q

(πi+2,...,πn)

Pr(xi+1, πi+1 = t | πi = s) Pr(xi+2, . . . , xn, πi+2, . . . , πn | πi = s, xi+1, πi+1 = t)

(43)

=

t∈Q

(πi+2,...,πn)

Pr(xi+1, πi+1 = t | πi = s) Pr(xi+2, . . . , xn, πi+2, . . . , πn | πi+1 = t)

(44)

=

t∈Q

as,t · et,xi+1
Pr(xi+2, . . . , xn | πi+1 = t) (45)

=

t∈Q

as,t · et,xi+1
· b[t, i+ 1]. (46)

Thus, we have the following recurrence.

b[s, i] =

1, if i = n,

t∈Q as,t · et,xi+1
· b[t, i+ 1], if 1 ≤ i < n.

(47)

Hence, the posterior probability is given by

Pr(πi = s | x) = Pr(x, πi = s)

Pr(x)
=

f [s, i] · b[s, i]
s∈Q f [s, n]

. (48)

6

This is the backward algorithm. We note that we can solve the data likelihood problem
using the backward algorithm as follows.

Pr(x) = Pr(x1, . . . , xn) (49)

=

s∈Q

Pr(x1, . . . , xn, π1 = s) (50)

=

s∈Q

Pr(π1 = s) Pr(x1, . . . , xn | π1 = s) (51)

=

s∈Q

Pr(π1 = s) Pr(x2 | π1 = s) Pr(x2, . . . , xn | π1 = s) (52)

=

s∈Q

Pr(π1 = s) Pr(x2 | π1 = s) Pr(x2 | π1 = s) (53)

=

s∈Q

a0,s · e[s, x1] · b[s, 1]. (54)

In the above derivation, Equation (52) follows from the Markov property, i.e. given the
hidden state πi the random variable xi is independent of all other variables.

5 Posterior Decoding

In the previous section, we learned how to use the Forward-Backward algorithm to compute
the posterior probability Pr(πi = s | x). Let π̂i denote the hidden state that maximizes this
posterior probability, i.e.

π̂i = argmax
s∈Q

Pr(πi = s | x) = argmax
s∈Q

f [s, i] · b[s, i]
t∈Q f [t, n]

. (55)

Thus, π̂i is the most likely state at each position, which is the desired quantity in certain
applications where we only care about the hidden state at a specific position. Since π̂i is
computed independently from the hidden states at the other positions, it may differ from π∗

i

obtained using the Viterbi algorithm. We call π̂ = π̂1, . . . , π̂n the posterior decoding. Since
there may be a position i such that π̂i ∕= π∗

i , it does not necessarily hold that π̂ equals
π∗ = argmax

π∈Qn

Pr(x,π) obtained using the Viterbi algorithm, i.e. Pr(x, π̂) ∕= Pr(x,π∗). In

particular, the posterior decoding may contain state transitions from π̂i to π̂i+1 with zero
probability, i.e. Pr(π̂i+1 | π̂i) = ai,i+1 = 0, and thus Pr(x, π̂) = 0. This means that the state
path of the posterior decoding may be invalid.

6 Learning Problem

Tables 1 and 2 summarize the algorithms that we have seen so far. What these algorithms
have in common is that they take a parameterized HMM as input with transition probabil-
ities A = [as,t] and emission probabilities E = [es,k]. What do we do if these two matrices
are not given to us? In that case, we have to learn the two matrices from a training set. We
distinguish two learning problems.

7

Type Probability Method Solution

Joint maxπ∈Qn Pr(x,π) Viterbi algorithm Pr(x,π∗) = maxs∈Q v[s, n]
Marginal Pr(x) Forward algorithm, or back-

ward algorithm
Pr(x) =

s∈Q f [s, n],

Pr(x) =

s∈Q a0,s · e[s, x1] · b[s, 1]
Posterior Pr(πi = s | x) Forward algorithm, and

backward algorithm
π̂i = argmax

s∈Q

f [s,i]·b[s,i]
t∈Q f [t,n]

Table 1: Hidden Markov Models – Three different probabilities

Type Recurrence

Viterbi v[s, i] =

a0,ses,x1 , if i = 1,

es,xi
maxt∈Q v[t, i− 1] · at,s, if i > 1.

Forward f [s, i] =

a0,ses,x1 , if i = 1,

es,xi

t∈Q f [t, i− 1] · at,s, if i > 1.

Backward b[s, i] =

1, if i = n,

t∈Q as,t · et,xi+1
· b[t, i+ 1], if 1 ≤ i < n.

Table 2: Hidden Markov Models – Three recurrences that each can be computed in O(n|Q|2)
time and O(n|Q|) space.

1. Estimation of A and E given a set {x(1), . . . ,x(N)} of observed symbols and corre-
sponding set {π(1), . . . ,π(N)} of state paths that generated each instance.

2. Estimation of A and E given only a set {x(1), . . . ,x(N)} of observed symbols without
the underlying state paths.

We start with the first learning problem. Given set {x(1), . . . ,x(N)} of observed symbols

and corresponding set {π(1), . . . ,π(N)} of state paths, let x
(j)
i denote the i-th observation of

instance j and let π
(j)
i denote the state that generated the i-th observation of instance j. Let

n(j) denote the number of observations/states in instance j ∈ [N]. Moreover, let ã0,s denote
the number of instances that start in state s ∈ Q, i.e.

ã0,s = |{j ∈ [N] | π(j)
1 = s}| ∀s ∈ Q. (56)

Let ãs,t denote the number of times we transition from state s to state t in the training set,
i.e.

ãs,t = |{(j, i) | j ∈ [N], i ∈ [n(j)− 1], π
(j)
i = s, π

(j)
i+1 = t}| ∀s, t ∈ Q. (57)

Finally, let ẽs,k denote the number of times we observe symbol k ∈ Σ in state s ∈ Q, i.e.

ẽs,k = |{(j, i) | j ∈ [N], i ∈ [n(j)], π
(j)
i = s, x

(j)
i = k}| ∀s ∈ Q, k ∈ Σ. (58)

Assuming independence between instances in the training set, the maximum likelihood
estimators of A = [as,t] and E = [es,k] for the joint probability Pr(x(1),π(1), . . . ,x(N),π(N)) =

8

N
j=1 Pr(x

(j),π(j)) are given by

as,0 =
ã0,s
N

, ∀s ∈ Q, (59)

as,t =
ãs,t

u∈Q ãs,u
, ∀s, t ∈ Q, (60)

es,k =
ẽs,k
ℓ∈Σ ẽs,ℓ

, ∀s ∈ Q, k ∈ Σ. (61)

The main drawback is that limited data (i.e. small N) may lead to a probability of 0
(overfitting). To overcome this, we can add pseudocounts > 0 and thus consider ãs,0 +
, ãs,t + and ẽs,k + in the numerators.

Let’s consider the second learning problem, where we are only given set {x(1), . . . ,x(N)}
of observed symbols and the underlying states are hidden to us.

Baum-Welch algorithm. To learn A = [as,t] and E = [es,k], we use Expectation Max-
imization (EM). The idea is to guess initial matrices θ = (A,E), and then iteratively re-
fine these matrices so as to maximize the marginal probability Pr(x(1), . . . ,x(N) | θ) =N

j=1 Pr(x
(j) | θ).

Let’s start with a single training instance j. How do we find θ∗ = (A∗, E∗) such that
Pr(x(j) | θ∗) is maximum? This is a hard inference problem that we will approximate heuris-
tically using an Expectation Maximization algorithm. We start by deriving the probability
Pr(π

(j)
i = s, π

(j)
i+1 = t | x(j), θ) that as,t is used in instance x(j) at position i as follows.

Pr(π
(j)
i = s, π

(j)
i+1 = t | x(j), θ) =

Pr(π
(j)
i = s, π

(j)
i+1 = t,x(j) | θ)

Pr(x(j) | θ) (62)

=
Pr(π

(j)
i = s, π

(j)
i+1 = t,x(j) | θ)

s∈Q f (j)[s, n(j)]
. (63)

The denominator follows from the forward algorithm (we could have also used the backward
algorithm). Let’s focus on the numerator – we will drop the instance index (j) for clarity.

Pr(πi = s, πi+1 = t,x | θ) = Pr(x1, . . . , xi, πi = s, πi+1 = t, xi+1, . . . , xn | θ) (64)

= Pr(πi+1 = t, xi+1, . . . , xn | x1, . . . , xi, πi = s, θ) (65)

· Pr(x1, . . . , xi, πi = s | θ)
= Pr(πi+1 = t, xi+1, . . . , xn | πi = s, θ) · f [s, i] (66)

= Pr(xi+2, . . . , xn | πi+1 = t, θ) Pr(xi+1 | πi+1 = t, θ) (67)

Pr(πi+1 = t | πi = s, θ) · f [s, i]
= b[t, i+ 1] · et,xi+1

· as,t · f [s, i] (68)

Thus, the expected number of times of transitioning from s to t at any position i < n(j) in
instance j ∈ [N] is given by

1
s∈Q f (j)[s, n(j)]

n(j)−1

i=1

b(j)[t, i+ 1] · et,xi+1
· as,t · f (j)[s, i]. (69)

9

Across all training instances, we have

E(as,t) = ãs,t =
N

j=1

1
s∈Q f (j)[s, n(j)]

n(j)−1

i=1

b(j)[t, i+ 1] · et,xi+1
· as,t · f (j)[s, i]. (70)

Similarly, we can derive

E(es,k) = ẽs,k =
N

j=1

n(j)
i=1 1(x

(j)
i = k) · f (j)[s, i] · b(j)[s, i]

s∈Q f (j)[s, n(j)]
. (71)

where indicator function 1(x
(j)
i = k) = 1 if x

(j)
i = k and 1(x

(j)
i = k) = 0 otherwise, and

E(a0,s) = ã0,s =
N

j=1

a0,s · es,x(j)
1

s∈Q f (j)[s, n(j)]
. (72)

Equations (70), (71) and (72) correspond to the expectation (E) step and takeO(Nm|Q|2)
time and O(m|Q|2) space to compute (where m = maxj∈[N] n(j)). In the maximization (M)
step, we compute the new values of θ = (A,E) given ãs,0, ãs,t and ẽs,k using Equations (59),
(60) and (61). We repeat this procedure until convergence of the marginal likelihood

Pr(x(1), . . . ,x(N) | θ) =
N

j=1

Pr(x(j) | θ) =
N

j=1

s∈Q

f (j)[s, n]. (73)

This algorithm is known as the Baum-Welch algorithm.

References

[1] Richard Durbin, Sean R. Eddy, Anders Krogh, and Graeme Mitchison. Biological Se-
quence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge Univer-
sity Press, 1998.

10

