CS 466

Introduction to Bioinformatics
Lecture 2

Course Announcements

Instructor:
* Mohammed El-Kebir (melkebir)
 Office hours: Mondays, 3:15-4:15pm

TA:
* Ashwin Ramesh (aramesh?7)
 Office hours: Fridays, 11:00-11:59am in SC 3405

Piazza: (please sign up)
e https://piazza.com/class##fall2019/cs466

https://piazza.com/class

Outline

Change problem

Review of running time analysis
Edit distance

Review elementary graph theory
Manhattan Tourist problem
Longest/shortest paths in DAGs

ok wheE

Reading:
* Jones and Pevzner. Chapters 2.7-2.9 and 6.1-6.4
* Lecture notes

The Change Problem

Change Problem: Given amount M € N \ {0} and coins ¢ = (cy, ..., c,;) € N"
st.c,=1andc¢; > c;,, forallie|n—1] ={1,..,n— 1},
findd = (d4, ...,d,) EN"s.t. (i) M = Y, c;d; and (ii) Y.;7=; d; is minimum

* Suppose we have n = 3 coins:

‘© 0 0

* What is the minimum number of coins needed to make change for M =9
cents?

* Answer: (dy, ...,d,;) = (1,0,2) thus 1 + 0 + 2 = 3 coins.

The Change Problem — Four Algorithms

GreedyChange(M, ¢4, ..., C,) ExhaustiveChange(M, c4, ..., C,,)

1. fori<1ton 1. for (di,....dn) € [[M/ci]] x ... x [[M/cn]]
2. d; < [M/ci] 2. if > cdi=M

3. M&M—dc 3. return (di,...,d,)
RecursiveChange(M, ¢4, ..., Cy) DPChange(M, c4, ..., Cp)

1. ifM =0 1. form<¢1toM

2 return 0 2. minNumCoins[m] € oo

3. bestNumCoins € o 3. fori < 1lton

4, fori < 1ton 4, minNumCoins[c;] € 1

5. ifM >¢; 5. form < 1toM

6 numCoins € RecursiveChange(M — c¢;, ¢y, ..., C) 6. fori<1ton

7 if numCoins + 1 < bestNumCaoins 7. ifm > ¢

8 bestNumCoins € numCoins + 1 8. minNumCoins[m] € min(1 +
9. return bestNumCoins minNumCoins[m — c¢;], minNumCoins[m])

9. return minNumCoins[M]

Four Different Algorithms

Greedy algorithm no yes
[GreedyChange]

Exhaustive enumeration yes no

[ExhaustiveChange]

Recursive algorithm yes no

[RecursiveChange]

Dynamic programming yes yes
[DPChange]

Question: How to assess efficiency?

Running Time Analysis

* The running time of an algorithm A for problem II is the maximum number
of steps that A will take on any instance of size n = |X]|

* Asymptotic running time ignores constant factors using Big O notation

g(n)

f(n) f(n)is 0(g(n)) provided there
exists ¢ > 0 and ny = 0 such that

f(n) <cg)foralln = n,

Ru

nning Time Analysis — Example

f(n)is 0(g(n)) provided there exists c > 0 and ny = 0 such that
f(n) <cgm)foralln = n,

_ F() = 100004 50077 oo S e
- 4|”|-:."‘.'——:““"' 1000 1200 1400 - g(n) = TL4/2 1 __: .:— 4 5 A - — 1000 g(n)

Pick c = 1000 and ny = 3. Then, f(n) < cg(n) for alln = n,.

The Change Problem — Running Time Analysis

GreedyChange(M, c4, ..., Cy)
1. fori< 1lton

2. d; < | M/c;]

3. M&M—dc

Number of operations:
* Line2:3=0(1)
* Line3:3=0(1)
* Total: 6n = 0(n)

DPChange(M, c4, ..., C)
1. form<¢1toM

2. minNumCoins[m] € oo
3. fori ¢ 1ton Number of operations:
4. minNumCoins|c;] € 1 * Lines1-2: O(M)
5. form & 1toM e Lines 3-4: O(Tl)
6. fori < 1ton e Lines 5-8: O(Mn)
7. ifm > c; * Total: O(M) + 0(n) + O(Mn) =
8. minNumCoins[m] € min(1 + O(Mn)
minNumCoins[m — ¢;], minNumCoins[m])

9. return minNum~Coins[M]

Running Time Analysis — Guidelines

* 0(n%) c 0(n?) for any positive constants a < b

* For any constantsa,b > 0andc > 1,

0(a) c 0O(logn) c 0(n®) c O(c™)

* We can multiply to learn about other functions. For any constants a,b > 0 and ¢ > 1,

O(an) = 0(n) c O(nlogn) c O(nnP) = 0(nP*1) c O(nc™)

e Base of the logarithm is a constant and can be ignored. For any constants a, b > 1,

O(loggn) = O(logy n/log, a) = 0(1/(log, a) log, n) = O(logp n)

Running Time Analysis — Guidelines

* 0(n%) c 0(n?) for any positive constants a < b o) constant
O(logn) Logarithmic
o(n) Linear
* For any constants a,b > 0 and ¢ > 1, 0(n?) Quadratic

0(n¢) = O(poly(n)) Polynomial
0 (2P°ly(m)) Exponential

0(a) c 0O(logn) c 0(n®) c O(c™)

* We can multiply to learn about other functions. For any constants a,b > 0 and ¢ > 1,

O(an) = 0(n) c O(nlogn) c O(nnP) = 0(nP*1) c O(nc™)

e Base of the logarithm is a constant and can be ignored. For any constants a, b > 1,

O(loggn) = O(logy n/log, a) = 0(1/(log, a) log, n) = O(logp n)

Running Time Analysis — More Examples

Question: What is O ((Z))?

Running Time Analysis — More Examples

Question: What is O ((Z))?

* For constant k > 0 it holds that (};) = 0(n*)

* Recall thatn! = [[L, i Question: Whatis 0(n!)?

Running Time Analysis — More Examples

Question: What is O ((Z))?

* For constant k > 0 it holds that (};) = 0(n*)

* Recall thatn! = [[}L, i Question: What is 0(n!)?
Stirling’s approximation: n! ~ v2mn (E)R =27 L2 pn = 0(n") = 0(2mo8™)
&> app T e exp(n)

(*):v/n/exp(n) < 1foralln >0 &

Question: Isn™ = 0(n!)?

Running Time Analysis — More Examples

Question: What is O ((Z))?

* For constant k > 0 it holds that (};) = 0(n*)

* Recall thatn! = [[}L, i Question: What is 0(n!)?
Stirling’s approximation: n! ~ v2mn (E)n =27 L2 pn = 0(n") = 0(2mo8™)
&> app T e exp(n)

(*):v/n/exp(n) < 1foralln >0 &

Question: Isn™ = 0(n!)?

Question: What is O(log(n!))?

Course Topic #1: Sequence Alignment

Molecular evolution of FOXPZ2, a gene N
i} i} “Thus, although the FOXP2 protein is
involved In Speech and Ianguage extremely conserved among mammals, it

acquired two amino-acid changes on the
Wolfgang Enard*, Molly Przeworski*, Simon E. Fisher, Cecilia S. L. Lai, human lineage at least one of which mav have
Victor Wiebe*, Takashi Kitano*, Anthony P. Monacoi & Svante Paaho* , 58 o o y ,
functional consequences. This is an intriguing
* Max Planck Institute for Evolutionary Anthropology, Inselstrasse 22, finding, because FOXP2 is the first gene known

D-04103 Letpzsg, Germany T to be involved in the development of speech
T Wellcome Trust Centre for Human Genetics, University of Oxford, ”
and language.

Roosevelt Drive, Oxford OX3 7BN, UK Nature (2002)

Human TSYNTSKASP PITHHSIVNG QSSVLSARRD SSSHEETGAS HTLYGHGVCK WPGCESICED FGQFLKHLNN EHALDDRSTA QCRVQOMQVVQ QLEIQLSKER
Chimp O L
@70 e T = I O .
Orang T 10
Rhesus B O S
Mouse D O 1

Figure 1 Alignment of the amino-acid sequences inferred from the FOXP2 cDNA sequences. The polyglutamine stretches and the forkhead domain are shaded. Sites that differ from the
human sequence are boxed.

Question: How do we align sequences to identify similarities/differences?

16

Alignment

An alignment between two strings v (of m characters) and w (of n characters)
is a two row matrix where the first row contains the characters of v in order,

the second row contains the characters of w in order, and spaces may be
interspersed throughout each.

Input Output
V: KITTEN (m =6) v: K — 1 T T E N —
w: SITTING (n=7) W: S T — T T I N G

Question: Is this a good alighment?
Answer: Count the number of insertion, deletions, substitutions.

Alignment

An alignment between two strings v (of m characters) and w (of n characters)
is a two row matrix where the first row contains the characters of v in order,

the second row contains the characters of w in order, and spaces may be
interspersed throughout each.

Input Output
V: KITTEN (m =6) v:| K — 1 T T E N —
w: SITTING (n=7) W:| S 1 — T T 1 N G

Question: Is this a good alighment?
Answer: Count the number of insertion, deletions, substitutions.

Edit Distance [Levenshtein, 1966]

Elementary operations: insertion, deletions and
substitutions of single characters

Edit Distance problem: Given strings v € X™ and w € X", compute the
minimum number d (v, w) of elementary operations to transform v into w.

d(cat,car) =1 d(cat,ate) =2 d(cat,are) = 3

Computing Edit Distance

Edit Distance problem: Given strings v € X™ and w € X", compute the
minimum number d (v, w) of elementary operations to transform v into w.

v: ATGTTAT. .. deletion insertion
w: AGCGTAC. ..
1 —1
prefix of voflengthi V. A T — G T I

prefix of w of length j w;! A (3 C (5 T —

mismatch

match

Optimal substructure:

Edit distance obtained from edit distance of prefix of string.

Computing Edit Distance — Optimal Substructure

dli, j] is the edit distance of v; and w;,
where v; is prefix of v of length i and w; is prefix of w of length j

Deletion: d[i,j] =d[i—1,j] + 1 w | Vi
Extend by a characterinv . | =

Insertion: d[i,j] =d[i,j — 1] + 1

Extend by a characterinw v | W
Mismatch: d[i,j] =d[i—1,j — 1]+ 1 | - | V;
Extend by a characterinvand w v | W
Match: d[i,j| =d[i —1,j — 1] | Vi

Extend by a characterinvand w v | W

Computing Ed

It Distance — Recurrence

dli,
where v; is prefix of v of length i and w; is prefix of w of length j

j1is the edit distance of v; and wy,

d|i, j] = min

&&&g

1 — 1,7+ 1
1,5 — 1]+ 1
1 —1,7—1
i—1,7—-1

+ 1,

if U; 7& Wy,

if Uy — Wjy.

Computing Edit Distance — Recurrence

dli, j] is the edit distance of v; and w;,
where v; is prefix of v of length i and w; is prefix of w of length j

0, if2=0and 53 =0,
dli — 1, 7]+ 1, it ¢ > 0,

dlt,j] = min ¢ d[i,j — 1] + 1, it 7 >0,
di—1,7—1]+1, if:>0,7 >0 and v; # w;,
dli — 1,7 — 1], if+>0,7>0and v; = w,.

Computing Edit Distance — Dynamic Programming

0, ifi=0and 5 =0,
— deletion] insertion " mismatch “—match I K it ¢ >0,
- ull i il B/ dli,j] = min < d[i, 7 — 1] + 1, it 7 >0,
di—1,5—1]+1, ifi>0, >0 and v; # wj,
d[i—l,j—l], ifi>0,j>0andvi:wj.
W A T C G \
vV 0 1 2 3 4
0
A 1
2
G 3
T 4

Computing Edit Distance — Dynamic Programming

match

— deletion 5 insertion W mismatch -
W A T C G
v 0 1 2 3 4
0 0
A 1
2
G 3
T 4

d[i, j] = min <

0, ifi=0and 5 =0,

dli —1,7] + 1, if i >0,

dfi,j — 1] + 1, if § >0,
dli—1,j—1]+1, ifi>0,j>0and v; # w;,
dli — 1,7 — 1], if 1 > 0,7 >0 and v; = w;.

Computing Edit Distance — Dynamic Programming

- deletion v;j insertion ‘xj mismatch :Z,- match
W A T C G

vV 0 1 2 3 4
0 0 1 2 3 4

A 1 1
2 2

G 3 3

T 4 4

dli,§] = min

ifi=0and 5 =0,
if 2 > 0,
if 7 >0,

, ifi>0,7>0and v; # wj,

ifi>0,j>0andvi:wj.

Computing Edit Distance — Dynamic Programming

deletion 5 insertion W mismatch - match
w A T C G
0 1 2 3 4
0 0 1 2 3 4
1 1 \K ?
2 2
3 3
4 4

d[i, j] = min <

ifi=0and j =0,
if 2+ > 0,
if 7 >0,

, ifi>0,7>0and v; # wj,

ifi>0,j>0andvi:wj.

Computing Edit Distance — Dynamic Programming

deletion 5 insertion W mismatch - match
w A T C G
0 1 2 3 4
0 0 1 2 3
1 1 0
2 2
3 3
4 4

d[i, j] = min <

ifi=0and j =0,
if 2+ > 0,
if 7 >0,

, ifi>0,7>0and v; # wj,

ifi>0,j>0andvi:wj.

Computing Edit Distance — Dynamic Programming

deletion 5 insertion W mismatch - match
w A T C G
0 1 2 3
0 0 1 2 3
1 1 0
2 ZAi ?
3 3
4 4

d[i, j] = min <

ifi=0and j =0,
if 2+ > 0,
if 7 >0,

, ifi>0,7>0and v; # wj,

ifi>0,j>0andvi:wj.

Computing Edit Distance — Dynamic Programming

- deletion v;j insertion ‘xj mismatch :Z,- match
W A T C G

V 0 1 2 3
0 0 1 2 3

A 1 1 0
2 2 1

G 3 3

T 4 4

dli,§] = min

ifi=0and 5 =0,
if 2 > 0,
if 7 >0,

, ifi>0,7>0and v; # wj,

ifi>0,j>0andvi:wj.

Computing Edit Distance — Dynamic Programming

0, ifi=0and 5 =0,
— deletion 1~ insertion - mismatch “—match I K it ¢ >0,
_ w | W ~ | il B dli,j] = min < d[i, 7 — 1] + 1, it 7 >0,
di—1,5—1]+1, ifi>0, >0 and v; # wj,
Ldli — 1,5 — 1], if 1 > 0,7 >0 and v; = w;.
W A T C G
vV 0 1 2 3 4
0 0 1 2 3 4 i—1,j—1 i —1,j
A 1 1 1 14 | A
q /4 U
[4 [4 7
U4 U4 II
2 2 4 / /
U L l4
Y Vi 4
G II II II
3 3 II II II
/ ! /
T A 4 \/ v v’ v

Computing Edit Distance — Dynamic Programming

- deletion v;j insertion ‘xj mismatch :Z,- match
W A T C G

vV 0 1 2 3 4
0 0 1 2 3 4

A 1 | 1 | T =g
, , P —==

G 3 3 ce - =

T 4 4 PR S [g

d[i, j] = min <

0, ifi=0and 5 =0,

dli —1,7] + 1, if i >0,

dli,j — 1] + 1, if j > 0,
di—1,5—1]+1, ifi>0, >0 and v; # wj,
dli — 1,7 — 1], if 1 > 0,7 >0 and v; = w;.

\

i—1,j—1 i—1,j

32

Computing Edit Distance — Dynamic Programming

deletion 5 insertion W mismatch - match
W A
0 1
0 0 1
1 1 | -
2 2 i
3 3 a
4 | 4 | S

d[i, j] = min <

ifi=0and j =0,
if 2+ > 0,
if 7 >0,

, ifi>0,7>0and v; # wj,

ifi>0,j>0andvi:wj.

33

Computing Edit Distance — Dynamic Programming

- deletion v;j insertion ‘xj mismatch :Z,- match
W A T C G

vV 0 1 2 3 4
0 0 1 2 3 4

A 1 1 0 1 2
2 2 1 0 1

G 3 3 2 1 1

T 4 4 3 2 2

dli,§] = min

\

(0 ifi=0and 5 =0,
dli —1,7] + 1, if 2 > 0,

dii—1,j—1]41, ifi>0,j >0 and v; # wj,

[

dli,j — 1]+ 1, if j >0,
[

dli — 1,5 — 1],

iti>0,7>0and v; = w;.

i—1,j—1

i—1,j

Computing Edit Distance — Dynamic Programming

- deletion v;j insertion ‘xj mismatch :Z,- match
W A T C G

vV 0 1 2 3 4
0 0 1 2 3 4

A 1 1 0 1 2
2 2 1 0 1

G 3 3 2 1 1

T 4 4 3 2 2

dli,§] = min

\

(0 ifi=0and 5 =0,
dli —1,7] + 1, if 2 > 0,

dii—1,j—1]41, ifi>0,j >0 and v; # wj,

[

dli,j — 1]+ 1, if j >0,
[

dli — 1,5 — 1],

iti>0,7>0and v; = w;.

i—1,j—1

i—1,j

Computing Edit Distance — Dynamic Programming

— match

- deletion - insertion — mismatch
w A C
Vv 1 3
0 1 3
A 1 0 2
2 1 1
G 3 2 1
T 4 3 2

d[i, j] = min <

(0

dli —1,75] + 1,
i, — 1]+ 1,
dz—1]—1]+1

di—1,7 —

if ¢+ =0 and 5 =0,

if 2 > 0,

if 7 >0,

if i >0, 7 > 0 and v; # wy,
iti>0,7>0and v; = w;.

Computing Edit Distance — Running Time

0, ifi=0and 5 =0,
- deletion F—+—insertion " mismatch - match o , dli = 1,5+ 1, it ¢ >0,
- walll B/ B Wi dli,j] = min < d[i, 7 — 1] + 1, if 7 >0,
di—1,5—1]+1, ifi>0, >0 and v; # wj,
dli — 1,7 — 1], ifi >0, j>0and v; = w,.
w A T C G \ ’
vV 0 1 2 3 4
0 0 1 2 3 4
A 1 1 0 1 2 3
Foreach(m + 1)X (n + 1) entry:
2 2 1 0 1 2 * 3 addition operations
G 3 3 2 1 1 1 * 1 comparison operation
* 1 minimum operation
T 4 4 3 2 2 2 Running time: O (mn) time

Computing Edit Distance — Running Time

0, ifi=0and 5 =0,
- deletion F—+—insertion " mismatch - match o , dli = 1,5+ 1, it ¢ >0,
- walll B/ B Wi dli,j] = min < d[i, 7 — 1] + 1, if 7 >0,
di—1,5—1]+1, ifi>0, >0 and v; # wj,
dli — 1,7 — 1], ifi >0, j>0and v; = w,.
w A T C G \ ’
vV 0 1 2 3 4
0 0 1 2 3 4
A 1 1 0 1 2 3
Foreach(m + 1)X (n + 1) entry:
2 2 1 0 1 2 * 3 addition operations
G 3 3 2 1 1 1 * 1 comparison operation
* 1 minimum operation
T 4 4 3 2 2 2 Running time: O (mn) time

Computing Edit Distance — Your turn!

Vi . i .
deletion insertion
~ W,
" mismatch " match
W C A R
V 0 1 2 3
0
C 1
2
T 3

d(cat, car) =

i—1,j—1 i—1,j
()
o, d[i, j] = min <
/-, 1
® 1
i,j—1 i,j
\"\} A T E
V 0 1 2 3
0
C 1
2
T 3

d(cat, ate) =

ifi=0and j =0,
i—1,7]+1, if i >0,
[i,7 — 1]+ 1, if § >0,
i—1,7—1]+1, ifi>0, >0 and v; # wj,
[i—l,j—l], ifi>0,j>0andvi:wj.
W A R E
VvV 0 1 2 3
0
C 1
2
T 3

d(cat, are) =

Change Problem and Edit distance

W A T C G
. . v 0 1 2 3 4
Make M cents using minimum

number of 1, 3 and 5 cent coins. 0 0 1 2 3 4
A 1 1 0 1 2 3

1 2 3 4 5 6 7
1 2 1 2 1 2 3 T 2 2 1 0 1 2

) G

3 3 2 1 1 1
T 4 4 3 2 2 2

* Both have optimal substructure and can be solved using dynamic programming
* These are examples of a more general problem!

Review of Graph Theory

* Graph G = (V,E)
* Vertices V = {vq, ..., v, }
* Edges E = {(v;, v}), ... }

Chicago

Bloomington

Champaign-Urbana

Indianapolis

St. Louis

42

Review of Graph Theory

* Directed Graph ¢ = (V,E)
* Vertices V = {vq, ..., v, }
* Directed edges E' = {(v;, v}), ... }

Chicago

Bloomington

Champaign-Urbana

Indianapolis

St. Louis

43

Review of Graph Theory

* Directed Graph ¢ = (V,E)
* Vertices V = {vq, ..., v, }
* Directed edges E' = {(v;, v}), ... }

* Path is a sequence of vertices and edges
that connect them

Chicago

Bloomington

Champaign-Urbana

Indianapolis

St. Louis

44

Review of Graph Theory

* Directed Graph ¢ = (V,E)
* Vertices V = {vq, ..., v, }
* Directed edges E' = {(v;, v}), ... }

* Path is a sequence of vertices and edges
that connect them

Chicago

130
* Edges can be weighted

Bloomington

Champaign-Urbana

180
Indianapolis

St. Louis

45

Manhattan Tourist Problem

A tourist in Manhattan
wants to visit the
maximum number of
attractions (*) by
traveling on a path (only
eastward and southward)
from start to end

l

l

Manhattan Tourist Problem

A tourist in Manhattan
wants to visit the
maximum number of
attractions (*) by
traveling on a path (only
eastward and southward)
from start to end

May be more than 1

attraction on a street.
Add weights!

@
2 1
1 1
,,1 1 I
5
1 1 +3—e@

Manhattan Tourist Problem

begin

Manhattan Tourist
Problem (MTP):

Given a weighted, |
directed grid graph G 4 6 5 2 '
with two ve.rtlces begin” | &= | o | 7 | 3 _@9 4 (@
and “end”, find the
maximum weight path in 4 4 5 2 1
G from “begin” to “end”. | . . 3 4 3 4 0 4002 fza
5 6 8 5 3
____________ 1 3 2 - @/end

Manhattan Tourist Problem — Exhaustive Algorithm

Check all paths begin

Question:
How many paths?

end

————————————

V<
<B\f Oy fJ\B \[: ‘/';\f
— B —

Manhattan Tourist Problem — Greedy Algorithm

begin @ ! s 2 >

better path!

promising start,
but leads to bad
choices! v R end

Manhattan Tourist Problem — Optimal Substructure

1

2

begin @

10

best score to this point

end

best score to this
point

best score to end

51

Manhattan Tourist Problem — Optimal Substructure

s|i,j] is the best score for path to coordinate (i, j)

Question: What is the recurrence?

begin

0

\ 4

L

—

best score to this point

O end@

C, > >
3 10 5
\ 4 2 R 4 ’ Y
best score to
5 3 1 this point
2 ‘/
——
0 5
0 v

best score to
end

wl[(i —1,)), (i,j)] weight of street between (i — 1,j) and (i,)
wl(i,j — 1), (i,j)] weight of street between (i,j — 1) and (i,)

Manhattan Tourist Problem — Optimal Substructure

s|i,j] is the best score for path to coordinate (i, j)

s[i, j] = max {

begin @ — 2 >

5 3 10 5

v 2 R 2 1 ’ 5

best score to
0 if4=0and j=0, 3 5 3 1 this point
sli — 1, 7] +w([(i —1,5),(,5)] if¢>0, , , , /
sfi, J — 1) +wl(i,j — 1), (. 5)] i >0, d i
0 0 5
v 0 y 0

O end@ best score to

best score to this point ’ end

wl[(i —1,)), (i,j)] weight of street between (i — 1,j) and (i,)
wl(i,j — 1), (i,j)] weight of street between (i,j — 1) and (i,)

MTP — Solving Recurrence using Dynamic Programming

s[i, j] is the best score for path to coordinate (i, j)

source
\: 0, if i =0and j =0,
! slt,j] = max < s[i — 1, 5] + w[(i — 1,7), (i,5)] ifi >0,

--------- sli, j =1+ wl(z,j —1),(2,4)] if j > 0.

 w[(i—1,)),(ij)] weight of street between

(i—1,j)and (i,j)
 w[(i,j—1),(ij)] weight of street between

(l,] _ 1) and (l'])

MTP — Solving Recurrence using Dynamic Programming

sourre\;

s[i, j] is the best score for path to coordinate (i, j)

. 0, ifi=0and j =0
1 L s[i, j] max{s[i1,j]+w[(i1,j),(z’,j)] if 4 > 0,
0 1 sli,j — 1) +w[(i, 5 — 1), (i,5)] if j > 0.
 w[(i—1,)),(ij)] weight of street between
(i—1,j)and (i,j)
5 w[(i,j—1),(ij)] weight of street between
(l,] _ 1) and (l'])

MTP — Solving Recurrence using Dynamic Programming

sourre\;

Yoo __

s[i, j] is the best score for path to coordinate (i, j)

Vg

0, ifi=0and j =0
sli,j] = max { s[i — 1,§] +w[(i — 1,5), (i, 5)] if >0,

 w[(i—1,)),(ij)] weight of street between

(i—1,j)and (i,j)
 w[(i,j—1),(ij)] weight of street between

(l,] _ 1) and (l!])

MTP — Solving Recurrence using Dynamic Programming

s[i, j] is the best score for path to coordinate (i, j)

A\ A
A A
A

source | i | |
\: ! 0, ifi=0and j =0,
i 1 i 2 i 5 i sli, j] = max § sli — 1, j] + wl(i — 1,7), (,7)] ifi>0,

""""" 0 1 5 3 sli,j — 1]+ wl(i,j — 1), (i,5)] ifj>0.
5 3 10
 w[(i—1,)),(ij)] weight of street between
_________ v 2 \4 1 R4 (l — 1)]) and (l;])
5 19 13 w[(i,j—1),(ij)] weight of street between
(i,j — 1) and (i,))
3 5
_________ A 4 2 R4
8 12
0

MTP — Solving Recurrence using Dynamic Programming

sourgs\\\;

Yoo __

S

Y o ____

<

12

1 3 8
10 5
17 113 18
3
112 16
0

s[i, j] is the best score for path to coordinate (i, j)

if i =0and j =0,
if + > 0,

07
S[Zaj] = max S[Z - 17]] + wKZ - 17j)7 (Zvj)]
if § > 0.

5[17] - 1] + w[(%] _ 1)7 (7’7])]

 w[(i—1,)),(ij)] weight of street between

(i—1,j)and (i,j)
 w[(i,j—1),(ij)] weight of street between

(l'] _ 1) and (l!])

MTP — Solving Recurrence using Dynamic Programming

sourre\;

Yoo __

S

Y o ____

5
1 3 8
10
\ VV ;V 5 =V
7 13 18
3 1
\ Q4 Q4 4 R 4
12 16 20
0 5
12 21

s[i, j] is the best score for path to coordinate (i, j)

0, ifi=0and j =0,
sli,j] = max { s[i — 1,§] +w[(i — 1,5), (i, 5)] if >0,

 w[(i—1,)),(ij)] weight of street between

(i—1,j)and (i,j)
 w[(i,j—1),(ij)] weight of street between

(l'] _ 1) and (l»])

MTP — Solving Recurrence using Dynamic Programming

sourre\;

Yoo __

S

Y o ____

1 3
10 5
A pY »Y »)
7 13
3 1
A pY pY »)
12 16
0 5 2
A =v p 3
12 21

18

20

22

s[i, j] is the best score for path to coordinate (i, j)

0, ifi=0and j =0,
sli,j] = max { s[i — 1,§] +w[(i — 1,5), (i, 5)] if >0,

 w[(i—1,)),(ij)] weight of street between

(i—1,j)and (i,j)
 w[(i,j—1),(ij)] weight of street between

(l'] _ 1) and (l»])

MTP — Solving Recurrence using Dynamic Programming

sourre\;

Y o ____

1 8
10 5
¥ Y \ 4 R
7 13 18
3 1
A :‘7 > "
12 16 20
0 5 2
12 " 21 ey

s[i, j] is the best score for path to coordinate (i, j)

0, ifi=0and j =0,
sli,j] = max { s[i — 1,§] +w[(i — 1,5), (i, 5)] if >0,

 w[(i—1,)),(ij)] weight of street between

(i—1,j)and (i,j)
 w[(i,j—1),(ij)] weight of street between

(l,] _ 1) and (l!])

Let m be the number of rows and n be
the number of columns.
Running time: O (mn)

Question: Implementation?

Manhattan Is Not a Perfect Grid

What about diagonals?

s|B| = max < s[Asy

:A17B:
AQaB
:A37 B

Manhattan Is Not a Perfect Grid, It's a Directed Graph

G = (V,E) is adirected

Each edge is evaluated
once: O(|E|) time

acyclic graph (DAG)
with nonnegative edges

weightsw : E —» RT

s[0,0] = 0

sli,j]= max {s[i', 5] +w[(@, j'), (i, 5)]}
(¢/,3") € pred(s,j)

Dynamic Programming as a Graph Problem

Manhattan Tourist Problem:

Every path in directed graph is a possible S
tourist path. Find maximum weight path. %

Running time: O(mn) = O(|E|)

Change Problem: Make M cents using
minimum number of coins ¢ = (1, 3, 5).
Every path in directed graph is a possible
change. Find shortest path.

Running time: O0(Mn) = O(|E|)

What About the Edit Distance Problem?

W A T C
\' 1 2 3
0
A 1
2
G 3
T 4
v; | deletion - | insertion v; | mismatch
| — BN

match

Edit Distance problem: Given
strings v € 2™ and w € X",
compute the minimum number
d(v,w) of elementary operations
to transform vinto w.

What About the Edit Distance Problem?

W A T C G Edit Distance problem: Given
- m n
Y,)) > : : strings VEZ”andWEZ,
compute the minimum number
O 0o TOoO OO d(v, w) of elementary operations
A 1 O,y e to transform v into w.
PNTN NN
2 O —>0—0—0 =0
G NV ¥ } } Edit graph is a weighed, directed grid
3 OT L oOT9T 0 graph G = (V, E) with source vertex
T 4 Obbro ol Nl (0, Q) .and target vertex (m, n). Each.
edge (i,j) has weight [i,]| corresponding

v; | deletion - | insertion v; | mismatch [vi| match to edit cost: deletion (1)1 insertion (1)1
- ! Wi — wj \ wil N\ mismatch (1) and match (0).

What About the Edit Distance Problem?

W A T C G
\4 0 1 2 3 4
0 O— 00— 0—0—0
. PR NN
; ? u i) ~ ? C ? N i) Alignment is a path from (0,0) to (m, n)
2 O 00— 0=—>0—>0
¥ N ¥ ¥ } } Edit graph is a weighed, directed grid
G 3 OT L oOT9T 0 graph G = (V, E) with source vertex
T i | 04ro oo T (0, 0) and target vertex (m, n). Each
edge (i,j) has weight [i,]| corresponding
v; | deletion - | insertion v; | mismatch [vi| match to edit cost: deletion (1)r insertion (1),
- ! Wi — wj \ wil N\ mismatch (1) and match (0).

W A T C G
0 1 2 3 4

0 O=r>0=>0 =0 -0
| | |
v v v ; ;

1 O—"O—"(I)—"O—-PO
N VNV

2 O =0 =—>0-—>0-—>0
N | | I l
vV [V v v v

3 O 00 =—/>0=-—0
| |
¥ 2w 2 e

4 O=—rT>0=-—/>0=-—1>0->0

. | deletion - | insertion v; | mismatch v; | match
‘ — b N\ v N\

What About the Edit Distance Problem?

Edit Distance problem: Given edit
graph ¢ = (V, E), with edge
weights c : E — {0,1}. Find

shortest path from (0, 0) to (m, n).

Alignment is a path from (0,0) to (m, n)

Edit graph is a weighed, directed grid
graph G = (V, E') with source vertex
(0,0) and target vertex (m,n). Each
edge (i,)) has weight [i, j] corresponding
to edit cost: deletion (1), insertion (1),
mismatch (1) and match (0).

Shortest Path vs Longest Path

* Change graph, edit graph and the MTP grid are directed graphs G.

* Change problem and Edit Distance problem are minimization problems.

* Find shortest path in G from source to sink.

* Manhattan Tourist problem is a maximization problem.
* Find longest path in G from source to sink.

Shortest Path vs Longest Path

 Shortest path in directed graphs can be found efficiently (Dijkstra, Bellman-
Ford, Floyd-Warshall algorithms)

e Longest path in direct graphs cannot be found efficiently (NP-hard).

* Change graph, edit graph and MTP grid graph are directed acylic graphs

(DAGS). Q

* No directed cycles.

* Longest path problem in a DAG can O
solved efficiently by dynamic programming directed cycle Q

Question: What’s the relation between absence of directed cycles and optimal substructure?

Weighted Edit Distance

dli, j] is the edit distance of v; and w;,
where v; is prefix of v of length i and w; is prefix of w of length j

deletion

insertion

)
)

S
dfi,j] =min{ 7 T

mismatch |

d 1
d

:i—:_,j—:_:, ifvi:wj.

Replace +1 with different penalties for different types of edits.

summary

Change problem

Review of running time analysis
Edit distance

Review elementary graph theory
Manhattan Tourist problem
Longest/shortest paths in DAGs

ok wheE

Reading:
* Jones and Pevzner. Chapters 2.7-2.9 and 6.1-6.4
* Lecture notes

Sources

* CS 362 by Layla Oesper (Carleton College)

* CS 1810 by Ben Raphael (Brown/Princeton University)

* An Introduction to Bioinformatics Algorithms book (Jones and Pevzner)
* http://bioalgorithms.info/

