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1 Two-state Perfect Phylogeny Problem

These notes are based on Ref. [1].
We are given a binary matrix B ∈ {0, 1}n×m with n taxa (think of them as species)

and m characters. We say that taxon f ∈ [n] possesses character c ∈ [m] if bf,c = 1. We
consider the large maximum parsimony phylogeny problem. That is, given matrix B, infer
a phylogenetic tree T where each taxon in B uniquely corresponds to a leaf of T and the
internal vertices of T are labeled by n binary characters with minimum parsimony score
(i.e. the number of state changes is minimum). In general, this problem is NP-hard but we
consider a version of this problem with two additional constraints. First, the root vertex of
T must have state 0 for each character. Second, each character changes state from 0 to 1
only once on the tree and never reverts back from 1 to 0. The latter constraint is known as
the infinite sites assumption in populations genetics, and also known as the two-state perfect
phylogeny model. Let’s formalize this.

Definition 1. A rooted tree T with n leaves is a two-state perfect phylogeny for a given
binary matrix B ∈ {0, 1}n×m provided:

(i) each taxon (row of B) labels only one leaf,

(ii) each character labels only one edge, and

(iii) only the characters possessed by a taxon (leaf of T ) are present on the unique path to
the root.
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Importantly, there need not exist a two-state perfect phylogeny for a given matrix B.
This gives rise to the following problem.

Problem 1 (Two-state Perfect Phylogeny). Does a given binary matrix B ∈ {0, 1}n×m have
a two-state perfect phylogeny T? If so, construct T .

The way that this problem is posed should remind you of the large additive distance
phylogeny problem, where solutions where edge-labeled trees that generated a given distance
matrix D. The question that we asked there was to decide if D is additive. In our first
attempt, we had only a constructive definition of solutions (relying on the existence of a
tree T that generates D). Only later did we identify the four-point condition as a complete
characterization of the solution set.

Similarly, here, we only have a constructive definition of binary matrices that are two-
state perfect phylogeny matrices. This is not good enough! We want to identify a condition
Φ that is both necessary and sufficient for a binary matrix B to be generated by a two-state
perfect phylogeny tree T . That is, should T be a two-state perfect phylogeny for B then
B must satisfy Φ (necessary); and should B satisfy Φ then there must exist a two-state
perfect phylogeny T for B (sufficient). If Φ is necessary and sufficient then we say that Φ is
a complete characterization of the set of two-state perfect phylogeny matrices. Can we find
such a condition?

The answer is yes. There exists a condition Φ that can be computed in O(nm) time. It
will be helpful to sort the columns of B by the number of ones they contain, in descending
order (largest first). Ties are broken arbitrarily. Let B̄ denote the sorted binary matrix. We
make the following observation, which follows directly from Definition 1.

Observation 1. Let B̄ ∈ {0, 1}n×m be obtained from B ∈ {0, 1}n×m by sorting columns of
B in descending order by the number of ones they contain. Matrix B has a two-state perfect
phylogeny if and only if matrix B̄ has a two-state perfect phylogeny.

Moreover, identical columns can be trivially removed.

Observation 2. Let B′ ∈ {0, 1}n′×m be obtained from B ∈ {0, 1}n×m not containing repeated
columns present in B (clearly, n′ ≤ n). Matrix B has a two-state perfect phylogeny if and
only if matrix B′ has a two-state perfect phylogeny.

We have the following definition.

Definition 2. Binary matrix B ∈ {0, 1}n×m is conflict free if no pair of columns c and d
contain the three binary pairs (0, 1), (1, 0) and (1, 1).

Clearly, using a naive algorithm we can check in O(n3m2) if a matrix B is conflict free.
We have the following lemma.

Lemma 1 (Shared-prefix property). Let d be the rightmost column in B̄ possessed by two
taxa f and g. Then, if no pair of columns conflicts then f and g must be identical from
column 1 to column d.
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Proof. By the premise, we have b̄f,d = b̄g,d = 1. Consider a column c < d possessed by f .
That is, b̄f,c = 1. Since the columns are distinct and are sorted by the number of ones they
contain, we have that c and d must also contain the binary pair (1, 0), say in taxon h. We
thus have the following situation:

taxon c d
f 1 1
g ? 1
h 1 0

By the premise, we have that b̄g,c cannot be equal to 0, as that would introduce a conflict.
Hence, taxon g must also possess character c, i.e. b̄g,c = 1. Now the choice of considering
taxon f first was arbitrary, and the same argument can be given when g possesses a column
c < d. In other words, when either f or g possess a character c then the other taxon must
possess c as well. Hence, taxa f and g are identical from columns 1 to d.

We have the following theorem.

Theorem 1. Matrix B has a two-state perfect phylogeny tree if and only if B is conflict free.

Proof. (⇒) We start with the forward direction. Let T be a two-state perfect phylogeny tree
for B. Consider two characters c and d. Let ec (ed) be the edge where c (d) was introduced.
By Definition 1, taxa that possess c (or d) must be present as leaves below the edge ec (or
ed). We distinguish four cases.

1. ec = ed.

There cannot be a taxon with state (1, 0) or (0, 1) for the considered characters (c, d),
as taxa that possess either c or d are in the same subtree below ec = ed.

2. The edge ec is on the unique path from the root to ed.

There cannot be a taxon with state (c, d) = (0, 1), as character c was introduced prior
to character to d in T .

3. The edge ed is on the unique path from the root to ec.

There cannot be a taxon with state (c, d) = (1, 0), as character d was introduced prior
to character to c in T .

4. The two unique paths from the root to ec and ed are edge disjoint.

There cannot be a taxon with state (c, d) = (1, 1), as T does not contain a path from
the root containing both character c and d.

Hence columns c and d are conflict free. Since we chose c and d arbitrarily, matrix B itself
is conflict free (recall that conflict-free definition considers all pairs of column).

(⇐) We use Observation 1 and 2 and consider without loss of generality a sorted matrix B̄
obtained from B that does not contain any repeated columns. Observe that in any two-state
perfect phylogeny T for B it must hold that the characters labeling the edges of the unique
path from the root to a taxon f are exactly the characters that taxon f possesses. Moreover,
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the characters that taxon f possesses will appear in the same order in which they occur in
B̂. To see why, suppose that f possesses characters c < d. Per the previous statement,
characters c and d label edges on the unique path from the root to f . Now B̂ contains more
1s for character c than for character d. Thus, the edge ec must occur prior to ed. Hence, the
characters that a taxon f possesses will appear in the same order in which they occur in B̂.
This must hold for any two-state perfect phylogeny T for B̂. Thus, all that remains to show
is that the n paths for each taxon can assembled into a single tree if B̂ is conflict free.

We show how to construct a two-state perfect phylogeny T for a conflict-free matrix B̂.
The algorithm will construct T one row at a time. Initially, we create a root vertex. Next,
we consider taxon 1. We construct a path T1 composed of labeled edges for each character
possessed by this first taxon maintaining the order imposed by B̂. We extend the path with
an unlabeled edge leading to a new vertex that will correspond to the first taxon. Clearly,
T1 is a two-state perfect phylogeny tree for taxon 1.

Let Tf be the partial tree constructed from taxa 1 to f , and assume inductively that

Tf is a two-state perfect phylogeny tree for the first f taxa in B̂. We now describe how to
construct Tf+1. We traverse the edges in Tf starting from the root walking down the tree
as long as the traversed edges contain characters that are possessed by f in the same order
as in B̂. Let v be the last vertex visited on this traversed path, and let d denote the last
matched character. As Tf is a two-state perfect phylogeny, this path is unique. We then
create a new path extending from v and containing all characters e > d that are possessed
by f + 1 that have not been matched. This new path maintains the order of the columns in
B̂. Finally, we extend the new path by one edge, leading to a new leaf that corresponds to
f +1. We claim that Tf+1 is a two-state perfect phylogeny tree for the first f +1 taxa in B̂.

First, observe that each path to a leaf h ≤ f + 1 in Tf+1 contains exactly the characters
that taxon h possesses. Moreover, no character on the path to v is anywhere else in Tf+1, as
Tf is a two-state perfect phylogeny. Thus, we only need to show that none of the characters
that are in the new path from v to f + 1 are in Tf . Let d be the rightmost character in
B̄ that taxon f + 1 possesses and that is also possessed by a taxon in Tf . Let ed denote
the edge in Tf labeled by d. By definition, any taxon (leaf) h that is below ed possesses d.

We can apply the shared-prefixed property as B̂ is sorted and conflict-free. Thus, by the
shared-prefix property, rows h and f +1 are identical from column 1 to d. As such, the walk
from the root to v is also a walk from the root to h. Moreover, by the choice of d, taxa h and
f + 1 do not possess any other common character e > d. Thus, none of the characters that
are in the new path from v to f + 1 are in Tf . Hence, Tf+1 is a two-state perfect phylogeny

from the first f + 1 taxa of B̂.
When all taxa have been processed the resulting tree is thus a two-state perfect phylogeny

for B̂, and in turn for B upon re-introducing characters that correspond to repeated columns
(introducing multiple labels per edge).
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