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Course Ahnouncements
Instructor:

* Mohammed El-Kebir (melkebir)

» Office hours: Mondays, 3:15-4:15pm

TA:
e Anusri Pampari (pampari2)
* Office hours: Thursdays, 11:00-11:59am in SC 4105

Homework 2 will be released Sept. 28 and will be due Oct. 5

Midterm on Oct. 10, 7-9pm, 1310 DCL




Outline

* Protein Contact Map Overlap

Reading:
* Lecture notes

e Caprara, A., Carr, R,, Istrail, S., Lancia, G., & Walenz, B. (2004). 1001 Optimal
PDB Structure Alignments: Integer Programming Methods for Finding the
Maximum Contact Map Overlap. Journal of Computational Biology, 11(1),
27-52. http://doi.org/10.1089/106652704773416876



How to Compare Two Protein Structures?

1knt-4.0.cm: 55 residues with 43 contacts.
31 shared contacts.
1bpi-4.0.cm: 58 residues with 53 contacts.

FIG. 1. An optimal alignment of two 4A threshold contact maps of proteins 1bpi and 1knt,

Caprara, A., Carr, R,, Istrail, S., Lancia, G., & Walenz, B. (2004). 1001 Optimal PDB Structure Alignments: Integer Programming Methods for Finding the Maximum Contact Map Overlap.
Journal of Computational Biology, 11(1), 27-52.



Contact Map Overlap: Example Instance

FIG. 2. An alignment of value 3.

Caprara, A., Carr, R., Istrail, S., Lancia, G., & Walenz, B. (2004). 1001 Optimal PDB Structure Alignments: Integer Programming Methods for Finding the Maximum Contact Map Overlap.
Journal of Computational Biology, 11(1), 27-52.



Contact Map Overlap: Equivalent Representations

30 ANDONOYV ET AL.

FIG. 2. Relationship between a

matching in a bipartite graph B and m_".
a feasible path in the corresponding  G1 & 8 o
grid graph B'. (Left) Two contact

maps G1 and G2, and a matching in [/
the bipartite graph B (in the grey
area). Note that B is a complete
graph, but for the sake of simplicity |V2
only the edges of the considered
matching (M={(1,1)(2,3),(3,4)
(5,5)}) are visualized. According to
(1), wiM)=2. (Right) The same
matching is visualized in the grid G2
alike graph B’ as an increasing set

of wvertices {(1,1)(2,3),(3,4)(5,5)}
which we call a feasible path. It activates the arcs ((1,1)(2,3) and (3,4)(5,5)). The score of the path is the number of
these arcs (i.e., 2 in this case).

DOI: 10.1089/cmb.2009.0196



Integer Linear Programming

Figure 2.1: In gray, a polyhedron that is described by six constraints a;x < b;. The
objective function ¢’z increases in the direction in which the arrow points.
The optimal solution z* is denoted by a star. Left: The linear program.
Right: The integer linear program. Here, only the integer points within
the polyhedron are feasible, which are colored black. The LP relaxation of
this ILP is the LP problem that is visualized on the left side. The optimal
objective function value of the LP relaxation is always an upper bound on
the optimal objective function value of the ILP.

Inken Wohlers. Exact algorithms for pairwise protein structure alignment. PhD thesis, VU University Amsterdam, 2012



Separating Cutting Planes

Figure 2.2: The cutting plane method solves an ILP problem. The gray area denotes
the polyhedron described by the constraints of the current relaxed problem.
The dashed line denotes the objective function ¢’z which increases in the
direction in which the arrow points. The integer feasible solutions are
colored black. Solving the LP relaxation, we obtain the relaxed solution .
After adding a cutting plane (dotted line), we obtain a new relaxed solution
2!, Finally, after adding a second cutting plane, we obtain solution 2 which
has integer value and is thus the optimal solution z* of the ILP. A cutting
plane method solves only the LP relaxation of an ILP, but here, since the
optimal solution has integer value, the solution of the LP relaxation is also
the solution of the ILP.

Inken Wohlers. Exact algorithms for pairwise protein structure alignment. PhD thesis, VU University Amsterdam, 2012



Cutting Plane Method

Algorithm 2 Solving an LP problem using the cutting plane method.

1: P // The original problem

2: P' // The relaxed problem in iteration ¢
3: t «— 0 // Iteration

4: while True do

5. Compute optimal solution z* for P!

6: if 2! feasible for P then

Figure 2.2: The cutting plane method solves an ILP problem. The gray area denotes

the polyhedron described by the constraints of the current relaxed problem. [k return '

The dashed line denotes the objective function ¢’z which increases in the B elsg ) ) , o ;
direction in which the arrow points. The integer feasible solutions are o Fltli(ll a c1,1‘ctt111g planc. A < b; that :all solutions of > satisty, but not z°
colored black. Solving the LP relaxation, we obtain the relaxed solution 2°. 10: P « P with additional constraint 6,z < &

After adding a cutting plane (dotted line), we obtain a new relaxed solution 1; entc;_ift +1

x'. Finally, after adding a second cutting plane, we obtain solution 2% which

has integer value and is thus the optimal solution z* of the ILP. A cutting 13: end while

plane method solves only the LP relaxation of an ILP, but here, since the
optimal solution has integer value, the solution of the LP relaxation is also
the solution of the ILP.

Inken Wohlers. Exact algorithms for pairwise protein structure alignment. PhD thesis, VU University Amsterdam, 2012 9



Branch & Cut: Solving an ILP

 Whiteboard



Cut Separation in CMO

Inken Wohlers. Exact algorithms for pairwise
protein structure alignment. PhD thesis, VU
University Amsterdam, 2012

>
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Figure 3.8: Example of the graphs in which we use shortest path computations to
detect violated constraints. Left: The alignment graph G = (V) E).
Center: The graph G = (V',E’) in which we identify a violated con-
straint (3.8). The shortest decreasing path is colored black, it is C' =
{4.1,4.2,3.2,2.2,2.3,1.3}. If for the this path ) ., _~Z; > 1 holds, we
identified a violated constraint (3.8).



