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1 Two-state Perfect Phylogeny Problem

These notes are based on Ref. [1].

We are given a binary matrix B € {0,1}"*™ with n taxa (think of them as species)
and m characters. We say that taxon f € [n] possesses character ¢ € [n] if by, = 1. We
consider the large maximum parsimony phylogeny problem. That is, given matrix B, infer
a phylogenetic tree T" where each taxon in B uniquely corresponds to a leaf of T" and the
internal vertices of T' are labeled by n binary characters with minimum parsimony score
(i.e. the number of state changes is minimum). In general, this problem is NP-hard but we
consider a version of this problem with two additional constraints. First, the root vertex of
T must have state 0 for each character. Second, each character changes state from 0 to 1
only once on the tree and never reverts back from 1 to 0. The latter constraint is known as
the infinite sites assumption in populations genetics, and also known as the two-state perfect
phylogeny model. Let’s formalize this.

Definition 1. A rooted tree T with n leaves is a two-state perfect phylogeny for a given
binary matriz B € {0,1}"*™ provided:

(i) each tazxon (row of B) labels only one leaf,
(ii) each character labels only one edge, and

(11i) only the characters possessed by a tazon (leaf of T) are present on the unique path to
the root.



Importantly, there need not exist a two-state perfect phylogeny for a given matrix B.
This gives rise to the following problem.

Problem 1 (Two-state Perfect Phylogeny). Does a given binary matriz B € {0,1}™*™ have
a two-state perfect phylogeny T ? If so, construct T.

The way that this problem is posed should remind you of the large additive distance
phylogeny problem, where solutions where edge-labeled trees that generated a given distance
matrix D. The question that we asked there was to decide if D is additive. In our first
attempt, we had only a constructive definition of solutions (relying on the existence of a
tree T' that generates D). Only later did we identify the four-point condition as a complete
characterization of the solution set.

Similarly, here, we only have a constructive definition of binary matrices that are two-
state perfect phylogeny matrices. This is not good enough! We want to identify a condition
® that is both necessary and sufficient for a binary matrix B to be generated by a two-state
perfect phylogeny tree T. That is, should T be a two-state perfect phylogeny for B then
B must satisfy ® (necessary); and should B satisfy ® then there must exist a two-state
perfect phylogeny T for B (sufficient). If ® is necessary and sufficient then we say that ® is
a complete characterization of the set of two-state perfect phylogeny matrices. Can we find
such a condition?

The answer is yes. There exists a condition ® that can be computed in O(nm) time. It
will be helpful to sort the columns of B by the number of ones they contain, in descending
order (largest first). Ties are broken arbitrarily. Let B denote the sorted binary matrix. We
make the following observation, which follows directly from Definition 1.

Observation 1. Let B € {0,1}™™ be obtained from B € {0,1}"*™ by sorting columns of
B in descending order by the number of ones they contain. Matriz B has a two-state perfect
phylogeny if and only if matriz B has a two-state perfect phylogeny.

Moreover, identical columns can be trivially removed.

Observation 2. Let B’ € {0, 1}"*™ be obtained from B € {0,1}" ™ not containing repeated
columns present in B (clearly, n’ < n). Matriz B has a two-state perfect phylogeny if and
only if matriz B" has a two-state perfect phylogeny.

We have the following definition.

Definition 2. Binary matriz B € {0, 1}"*™ is conflict free if no pair of columns ¢ and d
contain the three binary pairs (0,1), (1,0) and (1,1).

Clearly, using a naive algorithm we can check in O(n3m?) if a matrix B is conflict free.
We have the following lemma.

Lemma 1 (Shared-prefix property). Let d be the rightmost column in B possessed by two
taxa f and g. Then, if no pair of columns conflicts then f and g must be identical from
column 1 to column d.



Proof. By the premise, we have Bﬁd = Bmd = 1. Consider a column ¢ < d possessed by f.
That is, by, = 1. Since the columns are distinct and are sorted by the number of ones they
contain, we have that ¢ and d must also contain the binary pair (1,0), say in taxon h. We
thus have the following situation:

taxon ‘ c d
f 1 1
g 701
h 1 0

By the premise, we have that l_)g,c cannot be equal to 0, as that would introduce a conflict.
Hence, taxon g must also possess character c, i.e. l_)g’,: = 1. Now the choice of considering
taxon f first was arbitrary, and the same argument can be given when ¢ possesses a column
¢ < d. In other words, when either f or g possess a character ¢ then the other taxon must
possess ¢ as well. Hence, taxa f and g are identical from columns 1 to d. O

We have the following theorem.
Theorem 1. Matriz B has a two-state perfect phylogeny tree if and only if B is conflict free.

Proof. (=) We start with the forward direction. Let T" be a two-state perfect phylogeny tree
for B. Consider two characters ¢ and d. Let e, (e4) be the edge where ¢ (d) was introduced.
By Definition 1, taxa that possess ¢ (or d) must be present as leaves below the edge e. (or
eq). We distinguish four cases.

1. e, =ey.
There cannot be a taxon with state (1,0) or (0, 1) for the considered characters (c, d),
as taxa that possess either ¢ or d are in the same subtree below e. = ¢e4.

2. The edge e, is on the unique path from the root to ey.
There cannot be a taxon with state (¢,d) = (0, 1), as character ¢ was introduced prior
to character to d in 7.

3. The edge e4 is on the unique path from the root to e..
There cannot be a taxon with state (¢, d) = (1,0), as character d was introduced prior
to character to ¢ in T'.

4. The two unique paths from the root to e. and e; are edge disjoint.
There cannot be a taxon with state (¢,d) = (1,1), as T' does not contain a path from

the root containing both character ¢ and d.

Hence columns ¢ and d are conflict free. Since we chose ¢ and d arbitrarily, matrix B itself
is conflict free (recall that conflict-free definition considers all pairs of column).

(<) We use Observation 1 and 2 and consider without loss of generality a sorted matrix B
obtain from B that does not contain any repeated columns. Observe that in any two-state
perfect phylogeny T for B it must hold that the characters label the edges of the unique
path from the root to a taxon f are exactly the characters that taxon f possesses. Moreover,



the characters that taxon f possesses will appear in the same order in which they occur in
B. To see why, suppose that f possesses characters ¢ < d. Per the previous statement,
characters ¢ and d label edges on the unique path from the root to f. Now B contains more
1s for character ¢ than for character d. Thus, the edge e, must occur prior to e;. Hence, the
characters that a taxon f possesses will appear in the same order in which they occur in B.
This must hold for any two-state perfect phylogeny T for B. Thus, all that remains to show
is that the n paths for each taxon can assembled into a single tree if B is conflict free.

We show constructively how to construct a two-state perfect phylogeny T for a conflict-
free matrix B. The algorithm will construct 7" one row at a time. Initially, we create a root
vertex. Next, we consider taxon 1. We construct a path T} composed of labeled edges for
each character possessed by this first taxon maintaining the order imposed by B. We extend
the path with an unlabeled edge leading to a new vertex that will correspond to the first
taxon. Clearly, T} is a two-state perfect phylogeny tree for taxon 1.

Let Ty be the partial tree constructed from taxa 1 to f, and assume inductively that
Ty is a two-state perfect phylogeny tree for the first f taxa in B. We now describe how to
construct Try;. We traverse the edges in Ty starting from the root walking down the tree
as long as the traversed edges contain characters that are possessed by f in the same order
as in B. Let v be the last vertex visited on this traversed path, and let ¢ denote the last
matched character. As T} is a two-state perfect phylogeny, this path is unique. We then
create a new path extending from v and containing all characters d > ¢ that are possessed
by f +1 that have not been matched. This new path maintains the order of the columns in
B. Finally, we extend the new path by one edge, leading to a new leaf that corresponds to
f+1. We claim that T4, is a two-state perfect phylogeny tree for the first f 41 taxa in B.

First, observe that each path path to a leaf h < f + 1 in Ty, contains exactly the
characters that taxon h possesses. Moreover, no character on the path to v is anywhere else
in Try1, as Ty is a two-state perfect phylogeny. Thus, we only need to show that none of
the characters that are in the new path from v to f + 1 are in Ty. Let d be the rightmost
character in B that taxon f + 1 possesses and that is also possessed by a taxon in T}. Let
eq denote the edge in Ty labeled by d. By definition, any taxon (leaf) h that is below e4
possesses d. We can apply the shared-prefixed property as B is sorted and conflict-free.
Thus, by the shared-prefix property, rows h and f + 1 are identical from column 1 to d. As
such, the walk from the root to v is also a walk from the root to h. Moreover, by the choice
of d, taxa h and f + 1 do not possess any other common character e > d. Thus, none of the
characters that are in the new path from v to f + 1 are in Ty. Hence, Tty is a two-state
perfect phylogeny from the first f + 1 taxa of B.

When all taxa have been processed the resulting tree is thus a two-state perfect phylogeny
for B, and in turn for B upon re-introducing characters that correspond to repeated columns
(introducing multiple labels per edge). ]
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