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Course Announcements

HW 3 due Oct 29 by 11:59pm




Outline

* Recap additive distance

* Neighbor joining

* Character-based phylogeny (small)
* Application to cancer

Reading:
* Chapters 10.2, 10.5-10.8, 10.9 in Jones and Pevzner



Hierarchical Clustering

Hierarchical Clustering (D, n)

Form n clusters each with one element
Construct a graph T by assigning one vertex to each cluster
while there is more than one cluster

1.

2

3

4

5. Find the two closest clusters C; and G,

6 Merge C; and C, into new cluster C with [C;[ +/C,/ elements

7 Compute distance from C to all other clusters

8 Add a new vertex Cto T and connect to vertices C; and C,

9 Remove rows and columns of D corresponding to C; and C,

10. Add arow and column to D corresponding to the new cluster C

11. returnT

Definition of distance between clusters
(or, linkage criterion) affects clustering!

Organize elements into a tree s.t.:

Leaves are elements

Paths between leaves represent
pairwise element distance
Similar elements lie within same
subtrees

{g2.94.90. 910}

{92.94, 910}

g2,94 }




Additive Dista

Matrix D is =)
ADDITIVE if there

exists a tree T with
di{T) = D;

NON-ADDITIVE
otherwise ===)

nce Matrices

A B C D
A0 2 4 4 1
B|2 0 4 4
Cl4 4 0 2 |
D|4 4 2 0 I
A B C D
A0 2 2 2
B2 0 3 2
cl2 3 0 2
D/ 2 2 2 0

N

This is a constructive definition




A Small and a Large Problem

Small Additive Distance Phylogeny Problem:
Given n X n distance matrix D = [d; ;] and unweighted tree T with

n leaves, determine edge weights such that dr(i,j) = d; ;

Large Additive Distance Phylogeny Problem:
Given n X n distance matrix D = [d; ;], find tree T with

n leaves and edge weights such that d(i,j) = d; ;

Both problems can be solved in polynomial time




Small Additive Distance Problem

1.

Find neighboring leaves i and j with parent k

2. Remove the rows and columns of i and j

Add a new row and column corresponding to k, where the
distance from k to any other leaf m is computed as

Repeat steps 1-3 until tree has only two vertices



Additive Phylogeny

AdditivePhylogeny(D)
if D is a 2 x 2 matrix
T =tree of a single edge of length D, ,
return’T
if D is non-degenerate

Compute trimming parameter &
Trim(D, &)
Find a triple j, j, k in D such that Djj+Dj = Dy
x=Dj
Remove jt row and j% column from D
T = AdditivePhylogeny(D).
Add a new vertex v to T at distance x from j to k

Add j back to T by creating an edge (v,)) of
length O

foreveryleaf /inT
if distance from / to v in the tree # D),
output “matrix is not additive”
return

Extend all “hanging” edges by length 6
return 7

O

N -

A B C D
A 0 4 10 9
'B 4 0 8 7
'C 10 s 0o 9
D 9 7 g 0
§ =1
A B C D
A O 2 8 7
'B 2 0 6 S
'C 8 6 0 7
‘D 7 5 7 0
A C D
A 0 S8 7
C s 0 7
D 7 7 0
0=3
[ TA C D
A 0 201
C 2 a0 1
P 1 1 o

>
(=1 A
=N N e



Additive Distance Matrix

Four point condition of matrix D = [d; ;|:
Every four leaves (quartet) can be labeled as (i, J, k, [) such that
di,j —+ dk,l S di,k —+ dj,l — di,l —+ dj,k

Theorem: Let D be an n X n matrix. The following statements are
equivalent.

1. Matrix D is additive.

2. There exists a unique tree T (modulo isomorphism) s.t. d; ; =
d-(i,j) for all (i,j) € n*.

3. Four point condition holds for every quartet (i, j, k, 1) € [n]*.




Outline

* Neighbor joining
* Character-based phylogeny (small)

* Application to cancer

Reading:
* Chapters 10.2, 10.5-10.8, 10.9 in Jones and Pevzner



Distance Based Phylogeny Problem

Large Additive Distance Phylogeny Problem:
Givenn X n matrix D = [d, ;], find tree T with n leaves and

edge weights such that max |d(i,j) — d; ;| is minimum.
(i,j)€[n]? ’

Equivalently, find additive matrix D’ closest to input matrix D




Neighbor Joining Algorithm (Saitou and Nei 1987)

 Constructs binary unrooted trees.

* Recall: leaves a and b are neighbors ® @
if they have a common parent X /
O——C
* Recall: closest leaves are not
necessarily neighbors @/ 7 0

* NJ: Find pair of leaves that are
“close” to each other but “far” from

other leaves

Two advantages: (1) reproduces correct tree for additive matrix,
and (2) otherwise gives good approximation of correct tree




Distance Trees as Hierarchical Clustering

Leaves = Data points.
Data points clustered/groupedinto @

hierarchyaccordingto some
distance criterion.
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Distance Trees as Hierarchical Clustering

Leaves = Data points.
Data points clustered/groupedinto @ A

hierarchyaccordingto some
distance criterion.
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Distance Trees as Hierarchical Clustering

1.
2
3
4
5.
6
7
8
9

10.
11.

Hierarchical Clustering (D, n)

Form n clusters each with one element
Construct a graph T by assigning one vertex to each cluster
while there is more than one cluster
Find the two closest clusters C; and G,
Merge C; and C, into new cluster C with [C;[ +/C,/ elements
Compute distance from C to all other clusters
Add a new vertex Cto T and connect to vertices C; and C,
Remove rows and columns of D corresponding to C; and C,
Add a row and column to D corresponding to the new cluster C

return T

Selection criterion: distance
between clusters affects
clustering!

®

o—
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Neighbor Joining: Selection Criterion
Uy = DA + DAY+ DI 2)

1 3
ox 01 ﬁn

0.4

0.4

Let C= {1, @\} be current clusters/leaves.

Define{u)= 3, D(j, k).
Intuitively, u; measures separation of i from other
leaves.

Goal: Minimize D(i, j) and maximize u+ u;
\ILOMO%M/LY 3Q Peval .71\

Solution: Find pair (i, j) that minimizes:
Spli, j) = (n—=2) D(i, j) — u;— u;

Claim: Given additive matrix D.

Sp(x, ¥) = min Sp(i, j) if and only if xand y are neighbors
In tree T with d;=D.
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Neighboring Joining: Algorithm
Initialization: 1) S nixu  ws <k ix @ @ @

Form n cdusters G, G;, ..., C,, one for each leaf node.

Define tree T to be the set of leaf nodes, one per sequence.

Iteration: (Dis m x m)
Pick i, j such that Sy(i, j) =(m — 2) D(i, j) — u;— u; is minimal.
ol
Merge iand jinto new node [j] in T. ) .é !
@Assign length % (D(i, j) + 1/(m-2) (u; —u;)) to edge (i, [if] )
@ Assign length % ( D(j, j) + 1/(m-2) (u;— u;)) to edge (j [i] )

Remove rows and columns from D corresponding toiand j.

Add row and column to D for new vertex [ij].

Set D( [ij], m) = % [ D(i, m)+ D(j, m)— D(i,)]

e

Termination:

When only one cluster
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Neighboring Joining: Example

Initialization:
Form n cdusters G, G;, ..., C,, one for each leaf node.

Define tree T to be the set of leaf nodes, one per sequence.

Iteration: (Dis m x m)

Pick i, j such that Sy(i, j) =(m — 2) D(i, j) — u;— u; is minimal.

Merge iand jinto new node [j] in T.
Assign length % (D(i, j) + 1/(m-2) (u; —u;)) to edge (i, [i] )
Assign length % ( D(j, j) + 1/(m-2) (u;— u; ) to edge (j [i] )

Remove rows and columns from D corresponding toiand j.

Add row and column to D for new vertex [ij].

Set D( [ij], m) = % [ D(i, m)+ D(j, m)— D(i,)]

Termination:

When only one cluster

A B C D

A 0 4 10 9

| B 4 0 8§ 7
[C 10 8 0o 9
D 9 7 g 0
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Advantages of Neighbor Joining

Theorem: Let D be an n X n matrix. If matrix D is additive
then neighbor joining produces the unique phylogenetic
tree T (modulo isomorphism) such that d; ; = dr(i, ) for all

(i,j) € n°.

g [ AN
6"1|)V [, OQU

Theorem: Let D (ioe an n X n matrix. If there exists an additive

matrix D' such that |[D — D'| o< 0.5 then neighbor joining

applied to D reconstructsthe unique tree T (modulo
isomorphism) such that d; ; = dr(i,)) forall (i, ) € n2.

T KT no vl 2o A @
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Neighbor Joining in Practice
=i N
= E I
2 W FE Wlr

IN 2N 3N 4N "IN 2N 3N 4N

T ‘ ‘
: Neighbor Joining tree relating
ITF copy number profiles from single

cells in a tumor.

o

n

5
© n,
§3 Tumour subpopulations
3 @ Diploids
4 | @ Pssudodipio H"L
@ Hypodiploids (
5 | O Aneuploid A IP
@ Aneuploid 8 ‘
1 20 40 60 80 1‘0.')

Cell number

[Navin et al, Nature 2011]
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Outline

* Character-based phylogeny (small)

* Application to cancer

Reading:
* Chapters 10.2, 10.5-10.8, 10.9 in Jones and Pevzner



Character-Based Tree Reconstruction

* Characters may be morphological features

* Shape of beak {generalist, insect catching, ...} D
* Number of legs {2,3,4, ..}
* Hibernation {yes, no}

* Character may be nucleotides/amino acids
*{A,T,C G}
e 20 amino acids

e \Values of a character are called states
e We assume discrete states



melkebir
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Character-Based Phylogeny Reconstruction

Input Output

characters optimal tree

Question: What is optimal?

@
Want: Optimization criterion l

23



Character-Based Phylogeny Reconstruction

Input Output

characters optimal tree

Question: What is optimal?

@
Want: Optimization criterion l

Question: How to optimize this criterion? m rlj i

Want: Algorithm

24



Character-Based Phylogeny Reconstruction: Input

Normal A Pointed P

25
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Character-Based Phylogeny Reconstruction: Criterion
ME

Question: Which tree is better?
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Character-Based Phylogeny Reconstruction: Criterion

(a) Parsimony Score=3 (b) Parsimony Score=2

Parsimony: minimize number of changes on edges of tree

27




Why Parsimony?

* Ockham’s razor: “simplest” explanation
for data

e Assumes that observed character
differences resulted from the fewest
possible mutations

* Seeks tree with the lowest parsimony
score, i.e. the sum of all (costs of)
mutations in the tree.

=\ 4y~ “All things being
g i wc(equal, the simplest

‘ ‘-solution tends to be
he best one.”

'William of Ockham



Again, a Small and a Large Problem

Small Maximum Parsimony Phylogeny Problem:
Given m X n matrix A = [a; ;] and tree T with m leaves, find

assignment of character states to each internal vertex of T
with minimum parsimony score.

0 3 f
Large Additive Distance Phylogeny Problem:
Given m X n matrix A = [a; ;], find a tree T with m leaves labeled

according to A and an assignment of character states to each internal
vertex of T with minimum parsimony score.

Question: Are both problems easy (i.e. in P)?
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Again, a Small and a Large Problem

Small Maximum Parsimony Phylogeny Problem:
Given m X n matrix A = [a; ;] and tree T with m leaves, find

assignment of character states to each internal vertex of T
with minimum parsimony score.

Large Additive Distance Phylogeny Problem:
Given m X n matrix A = [a; ;], find a tree T with m leaves labeled

according to A and an assignment of character states to each internal
vertex of T with minimum parsimony score.

Question: Are both problems easy (i.e. in P)?




Small Maximum Parsimony Phylogeny_ProbIem

ACCC ACCC = o
1/\{ 1

ACCA ACCG ACCA

ATCG ATCC ATCG ACCG ATCe Ac

Less More
Parsimonious Parsimonious
Score: 6 Score: 5

Question: There are n = 4 characters in the m = 2 taxa (leaves).

Can we solve each character separately?
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Recurrence = s=:€he

Cion bva T win 1207)] tocwes

g L(T) >3 /1y $00) = e
9

S(v) s otle s of dndlhven f v
v(/\\ oo F T

D V(T) <2 —=W VAY

@ (v,s) 75 the muiniunim  mchunber of pAxATog
WU~ "SS\%\/\MS sbkate < o wHhex V. N ’Hw\ SubVe \fad’\'QV{ aF V.

B VAP LR 3 ,r(T) 2 Aba C(CK’)*— o, it s=
as< /{A(\//S\ ): O, \L— ugl(r> ot Sen Gtrae ;?;o%\c//_?( at (/f) :L TFS‘Ff
S =
o € Véjii)’ Sep  vET) /T
' ) aud
S#F <lv), }A(V,S\ = i Mmin %c(s,ﬂﬂ—/w(%ﬂg
weg(u)ﬁez

32


melkebir
Pencil


Solving the Recurrence
D) 3 \/ééc/ﬂ cend

(

}A(V,SB: wAin O, e v el (V) arA

MU

s+ o(v),
S = 5(1/)/

_'.C|C

= wAM\%’C(SKW‘%/A“Uﬁ>§7 £V ELT)

w €5(v) teZ

L(S(%)T %O, F scjr/

1. f s+t



melkebir
Pencil

melkebir
Pencil

melkebir
Pencil

melkebir
Pencil


for s € >
it s = &s(v)

(vs)=2
dw/ﬂ

olse_
fof w ¢ g(
P, e, §>
(U(g)':o
/:0f W < 5((/)

/u(u,s? 4=

/m(\/,§) = D

A la~

//cbufll‘/(‘f@‘-\

W;uyi\% ¢(<,€H/M(w(f>zﬁ

Tocl timee (T, v, /)

c v=y() .
é’(Y k>) W?W’\d\%/m{(( 5(u)

d@tbk wn L’/\’L‘u WV\/&_.J\ of v and /{' S/LQ. ‘('149 S/z-kz
5((/) O v @c(s{ 4“//1(‘/%)30
te 5

Cor w & g(‘/)
BodAvee C/(/ vul//u>
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Sankoff Algorithm (Sankoff 1975)

Small Maximum Parsimony Phylogeny Problem:
Given m X n matrix A = [a; ;] and tree T with m leaves, find

assignment of character states to each internal vertex of T
with minimum parsimony score.
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Outline

* Application to cancer

Reading:
* Chapters 10.2, 10.5-10.8, 10.9 in Jones and Pevzner



Tumorigenesis: (i) Cell Division, (ii) Mutation & (iii) Migration

] S~ mutation
©)
S )
©) AR
0 d
= o R
@
¥ &
‘é 0‘ e’;
A VW o 2
{:% ON 9 (;\? ¥ ,‘(:\
»‘?3 ;\i‘f (!‘1 \1 ,59
primary tumor P metastasis M, metastasis M;

Cell Tree



Tumorigenesis: (i) Cell Division, (ii) Mutation & (iii) Migration

] S~ mutation
9
) *9*
) D
@
®
i &
v ¥ %
;:%.03 tz’*‘« @

primary tumor P metastasis M, metastasis M;

Cell Tree Phylogenetic Tree T



Tumorigenesis: (i) Cell Division, (ii) Mutation & (iii) Migration

Q Vertex
&

labeling €

time

primary tumor P metastasis M, metastasis M;

Cell Tree Phylogenetic Tree T

Goal: Given phylogenetic tree T, find parsimonious vertex labeling € with fewest migrations

Slatkin, M. and Maddison, W. P. (1989). A cladistic measure of gene flow inferred from the phylogenies of alleles. Genetics, 123(3), 603—613.




Minimum Migration Analysis in Ovarian Cancer

McPherson et al. (2016). Divergent modes of clonal spread and intraperitoneal mixing in high-grade serous
ovarian cancer. Nature Genetics.

* Instance of the maximum parsimony small phylogeny problem [Fitch, 1971; Sankoff, 1975]

SBwl
RETA Small Bowel
Right Fallopian LFTB .
Tube Left Fallopian
ROV Tube
Right Ovary LOv
< ApC Left Ovary
Appendix
(o) m = 7 anatomical sites
o
© (=)

A6 Al B5 B4 B3 B2 B1
RFTA Om ApC LOv LFTB SBwl Om
4



Minimum Migration Analysis in Ovarian Cancer

McPherson et al. (2016). Divergent modes of clonal spread and intraperitoneal mixing in high-grade serous
ovarian cancer. Nature Genetics.

* Instance of the maximum parsimony small phylogeny problem [Fitch, 1971; Sankoff, 1975]
u*=13

Migration
grap RETA Small Bowel
Right Fallopian LFTB .
Tube Left Fallopian

RFTA Om ROV Tube

Right Ovary LOv
< ApC Left Ovary

Appendix
(o) m = 7 anatomical sites
o
© (=)

A6 Al B5 B4 B3 B2 B1
RFTA Om ApC LOv LFTB SBwl Om
4



Minimum Migration History is Not Unigue

* Enumerate all minimum-migration vertex labelings in the backtrace step

u*=13

SBwl

RFTA Om

RFTA

Om
ApC  Appendix " ”
LFTB Left Fallopian Tube LOv ::[ LFTB LOv ::[ LFTB
LOv  Left Ovary
RFTA R?ght Fallopian Tube N ApC ApC
ROV Right Ovary u*=13
SBwl Small Bowel
Om Omentum ROV ROV




Comigrations: Simultaneous Migrations of Multiple Clones

* Multiple tumor cells migrate simultaneously through the blood stream [Cheung et al., 2016]

 Second objective: number y of comigrations is the number of multi-edges in migration graph G*

T Not necessarily true in the case of directed cycles
F Circulating tumor cell clusters

Multicolored Red Only Cyan Only

mTomato
CFP

Migration Graph G

DAPI
K14
Clone Tree T
<«
| O ApC Appendix
( LFTB Left Fallopian Tube
<« LOv  Left Ovary
RFTA Right Fallopian Tube
» ’ ROv Right Ovary

\, SBwl Small Bowel
A3 A2 Al Cl B5 B4 B3 B2 Bl
Gt () () () G () () () (8) (@) (&) (B (&) (s ) () (3 Om  Omentum



Comigrations: Simultaneous Migrations of Multiple Clones

* Multiple tumor cells migrate simultaneously through the blood stream [Cheung et al., 2016]

 Second objective: number y of comigrations is the number of multi-edges in migration graph G*

u*=13
y=10
RFTA Om

ApC  Appendix

LFTB Left Fallopian Tube
LOv  Left Ovary

RFTA Right Fallopian Tube
ROv Right Ovary

SBwl Small Bowel

Om Omentum

u*=13

T Not necessarily true in the case of directed cycles

SBwl

RFTA
Om
* <
LOv LFTB LOv LFTB
ApC ApC
*=13
V = 7 ROv ROv




Constrained Multi-objective Optimization Problem

Parsimonious Migration History (PMH): Given a phylogenetic tree T and aset P € {S,M, R}
of allowed migration patterns, find vertex labeling £ with minimum migration number u*(T)

and smallest comigration number 7 (T).

single-source seeding (S) multi-source seeding (M) reseeding (R)
a P = (S} b P = (S, M) c P = (S, M, R)
(W' 4) = (6,2) : (W' 4) = (5,3) Q (1",4) = (4,4) 9
Wi
Vertex Migration Gp
labeling £4 |graph G 4 12 (M)

(S)

clelelelele A :
Phylogenetic tree T' Leaf labeling ¢ (T,¢)

(T.4)

El-Kebir, M., Satas, G., & Raphael, B. J. (2018). Inferring parsimonious migration histories for metastatic cancers. Nature Genetics, 50(5), 718—-726.
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Results [El-Kebir, WABI 2018]

Parsimonious Migration History (PMH): Given a phylogenetic tree T and a set P € {S, M, R}
of allowed migration patterns, find vertex labeling £ with minimum migration number u*(T)

and smallest comigration number y(T).

single-source seeding (S)

P = {5) Theorem 1: PMH is NP-hard when P = {S}

—

(H*vﬁ/) — (672)

IvYY

Vertex Migration
labeling £4 |graph G 4

(S)

Theorem 2: PMH is fixed parameter
tractable in the number m of locations

when P = {S}

elelelelele A
Phylogenetic tree T' Leaf labeling £




PMH is NP-hard when P = {S} n

I T2 T3

3-SAT: Given @ = Ai; (Vi1 V iz V ¥i3) 5
with variables {x4, ..., x,,} and k clauses, ﬂxﬂ/ HIEENE
find ¢ : [n] — {0,1} satisfying ¢ 2 = {X{, e, Xy, 1X1, ere, 21Xy, C1y one Cp 5 L}

47



PMH is NP-hard when P = {S}

3-SAT: Given @ = Afoy (Viq V Yi2 V Vi3)
with variables {x;, ..., x,,} and k clauses,

find ¢ : [n] — {0,1} satisfying ¢

Three ideas:

1. Ensure that (x, =x) € E(G)
or (—x,x) € E(G)

2. Ensure that f*(r(T)) =1

3. Ensure that @ is satisfiable if
and only if £* encodes a
satisfying truth assignment

1
i) X3
X2 X3 C2

eeeeee

eeeee

-

j
Variable gadget T'[z;]

d (9 leaves )
.
DICIOIDIO, (Y6
O OOOO
H_j\ Y J L T J
Ci Yij =2 Wi = Ty

: J
Clause literal gadget T'[y; ;]




PMH is NP-hard when P = {S} n

3-SAT: Given @ = A=y (Vi1 V ¥i2 V ¥i3) IS
with variables {x4, ..., x,,} and k clauses, mf HIEENE
find ¢ : [n] — {0,1} satisfying ¢ 2 = {X{, e, Xy, 1X1, ere, 21Xy, C1y one Cp 5 L}

Three ideas:

1. Ensure that (x, =x) € E(G)
or (—x,x) € E(G)

2. Ensure that f*(r(T)) =1

b (2B leaves)| | € (Aleaves)||d (9 leaves)

3. Ensure that @ is satisfiable if 2
and only if £* encodes a /5%\0 PPPPP
SatISfyIng trUth aSSIgnment VﬁiiablegadgetT_[‘jj] Rootgaf:i_getT[J_] ) %I7;ujegfi1eralgadget Tﬁ[iﬁ;]:ﬁ%

Lemma: Let B > 10k +1and A > 2Bn + 27k.
Then, @ is satisfiable if and only if u*(T) = (B + 1)n + 25k




w*(T) = (B + Dn + 25k
R =23%3+50%2 =119

PMH is NP-hard when P = {S}

P = (xl VXx,V —|X3) 7A\ (—lxl, —1Xo, —|X3) | T[]

k=2,n=3 C Ty
B =10k + 2 =22
A=2Bn+27k+1 =187

[xl]

T[CBQ]

r,

X = {xq1, X9, X3, 11X, T1Xy, 1 X3, C1, Cp, 1L}

Lemma: Let B > 10k +1and A > 2Bn + 27k.
Then, @ is satisfiable if and only if u*(T) = (B + 1)n + 25k .




PMH is FPT in number m of locations when P = {S}

Leaf Vertex
labeling /¢ | labeling ¢*
N
Phylogenetic tree T’ Migration tree G Phylogenetic tree T’

Lemma: If there exists labeling £ consistent with G then

dr(u,v) > da(lcags(u), £(v)) Vu,v € V(T) such that u <7 v. (1)
£ ) = {LC’%('*(T)). 0= (7).
o(l*(m(v)),LCAx(v)), ifv#r(T),

where o(s,t) = s if s =t and otherwise o(s,t) is the unique child of s that lies on the path
from s to t in G.

Lemma: If (1) holds then £* is a minimum migration labeling consistent with G.
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PMH is FPT in number m of locations when P = {S}

Leaf Vertex
labeling /¢ | labeling ¢*
N
Phylogenetic tree T’ Migration tree G Phylogenetic tree T’

Lemma: If there exists labeling £ consistent with G then

dr(u,v) > da(lcags(u), £(v)) Vu,v € V(T) such that u <7 v. (1)
£ ) = {LC’%('*(T)). 0= (7).
o(l*(m(v)),LCAx(v)), ifv#r(T),

where o(s,t) = s if s =t and otherwise o(s,t) is the unique child of s that lies on the path
from s to t in G.

Lemma: If (1) holds then £* is a minimum migration labeling consistent with G.
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Simulations

a il

10.4
mutation rate

120 = =
] 2; 102 =5
§ 100
) 10} o ‘
=
QL (o]
e @ @ i
: R e =
2 60 W ; %-&-
2 i method
=
= 1 ILP-0.1
40 e ' ] FPT-0.1
§° 10-2 e B (P10
20 E B FPT-1.0
4 6 8 e 4 6 8
number m of locations number m of locations

Available on: https://github.com/elkebir-group/PMH-S
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Outline

* Recap additive distance

* Neighbor joining

* Character-based phylogeny (small)
* Application to cancer

Reading:
* Chapters 10.2, 10.5-10.8, 10.9 in Jones and Pevzner





