Detecting Evolutionary Patterns of Cancers using Consensus Trees

Sarah Christensen¹, Juho Kim², Nicholas Chia^{3,4}, Oluwasanmi Koyejo¹, and Mohammed El-Kebir¹

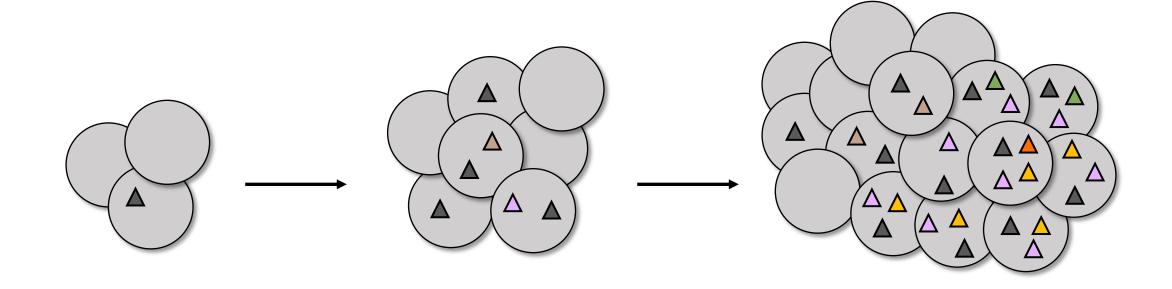
¹Dept. of CS, University of Illinois at Urbana-Champaign

²Dept. of ECE, University of Illinois at Urbana-Champaign

³Microbiome Program, Center for Individualized Medicine, Mayo Clinic

⁴Division of Surgical Research, Department of Surgery, Mayo Clinic

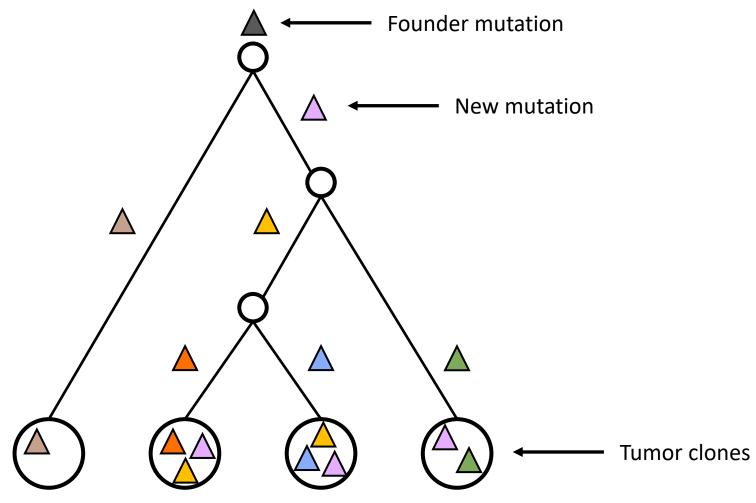
Evolution in Cancer



Clonal Evolution Theory of Cancer [Nowell, 1976]

ECCB 2020

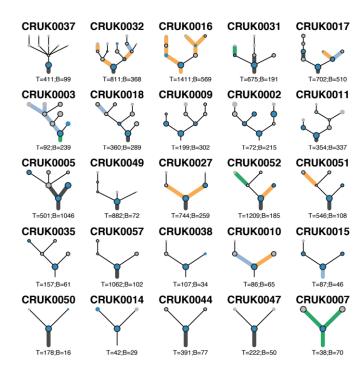
Phylogenetic Trees in Cancer



ECCB 2020

Phylogenies have potential to improve stratification of cancer patients into subtypes

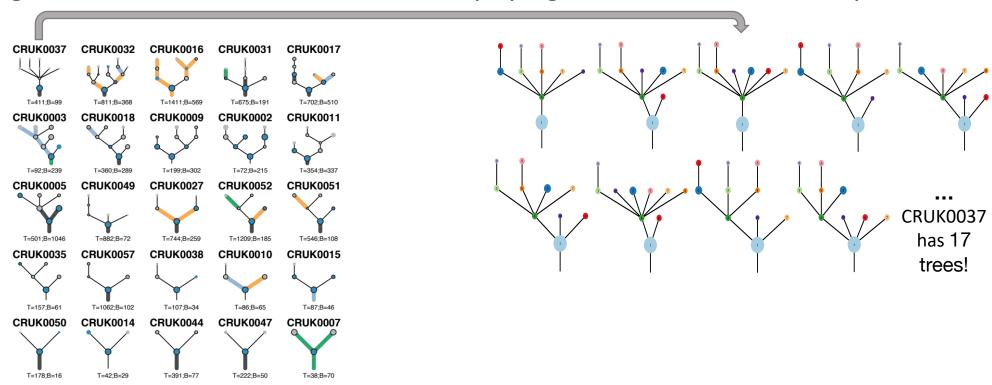
Goal: Find repeated patterns defined by ordering of recurrent driver mutations



Phylogenies have potential to improve stratification of cancer patients into subtypes

Goal: Find repeated patterns defined by ordering of recurrent driver mutations

Challenge: Obfuscated by alternative phylogenies at the individual patient level



Prior work on inferring phylogenies and finding evolutionary patterns using patient cohorts

REVOLVER [Caravagna et al., Nat. Methods 2018]

Hintra [Khakabimamaghani et al., Bioinformatics/ISMB 2019]

- Current methods do not account for cancer subtypes.
- Current methods do not scale to large patient trees.
- Current methods have trouble dealing with varying mutation sets as well as mutation clusters.

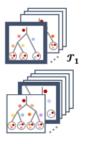
Our approach

We pose an optimization problem MCCT (Multiple Choice Consensus Tree) and algorithm RECAP (Revealing Evolutionary Consensus Across Patients).

Our approach leverages common patterns of evolution found in subtypes of patients to resolve ambiguities in patient data.

CB 2020

Inputs



+

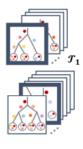
Parameter *k* for desired number of clusters

A set of possible trees for each patient

ECCB 2020

Inputs

Output



Parameter *k* for desired number of clusters

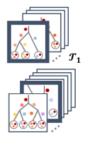
A set of possible trees for each patient

Select a tree $S_i \in \mathcal{T}_i$ for each patient i,

ECCB 2020

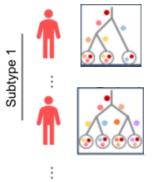
Inputs

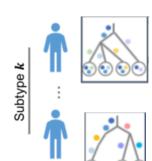
Output



+

Parameter *k* for desired number of clusters





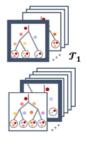
Select a tree $S_i \in \mathcal{T}_i$ for each patient i,

Assign each patient i to a cluster $\sigma(i) \in [k]$,

A set of possible trees for each patient

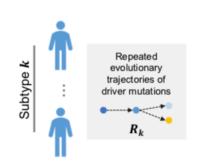
Inputs

Output



+

Parameter *k* for desired number of clusters



Select a tree $S_i \in \mathcal{T}_i$ for each patient i,

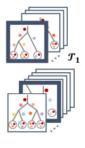
Assign each patient i to a cluster $\sigma(i) \in [k]$,

Construct consensus tree R_j for each cluster j,

A set of possible trees for each patient

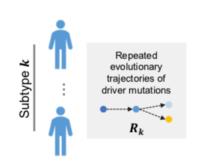
Inputs

Output



+

Parameter *k* for desired number of clusters



Select a tree $S_i \in \mathcal{T}_i$ for each patient i,

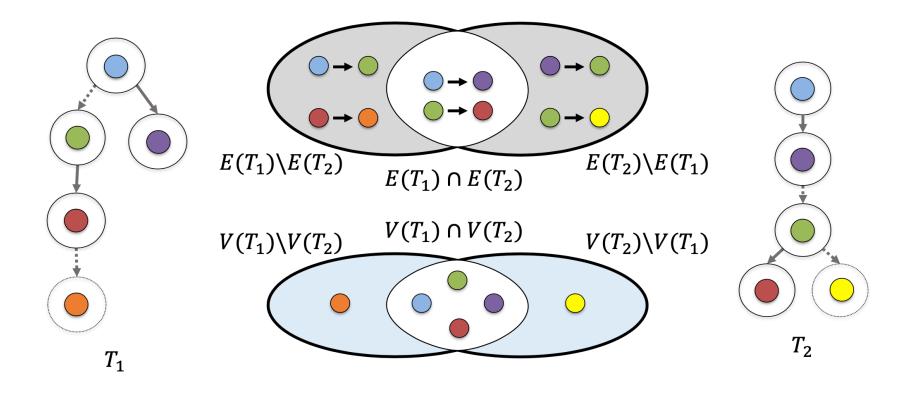
Assign each patient i to a cluster $\sigma(i) \in [k]$,

Construct consensus tree R_j for each cluster j,

Such that the sum of distances from each selected tree to the corresponding consensus tree is minimized.

A set of possible trees for each patient

Distance function accounts for varying mutation sets and tree sizes



$$d_N(T_1, T_2) = \frac{|E(T_1) \Delta E(T_2)| + |V(T_1) \Delta V(T_2)|}{2|\Sigma|} = \frac{4 + 2}{12} = 0.5$$

RECAP: Summary of results

Hardness: Proved MCCT NP-Hard via a reduction to 3-SAT and proposed gradient descent heuristic RECAP with model selection to use in practice.

Addresses prior limitations: RECAP allows for different patient subtypes, different mutation sets, scales to larger sets of mutations, and includes a DP subroutine to handle mutation clusters.

Empirical performance: RECAP outperforms existing methods on *simulated* data where there are different underlying subtypes and resolves ambiguity for patient phylogenies on *biological* data.

Simulation procedure allows patient subtypes

Randomly draw patient clustering

Construct cluster consensus tree by using Prüfer sequence on random subset of mutations

Generate patient trees by simulating bulk sequencing experiment seeded by consensus tree

600 different simulated instances

parameterized by four variables:

of mutations across cohort: 5 or 12

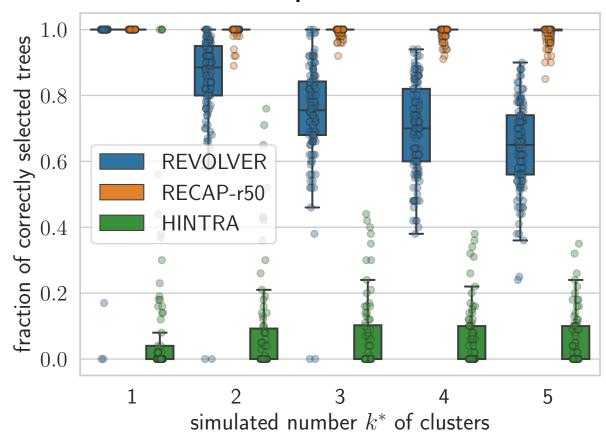
of mutations in patient trees: 5, 7, or 12

of clusters in ground truth: 1 to 5

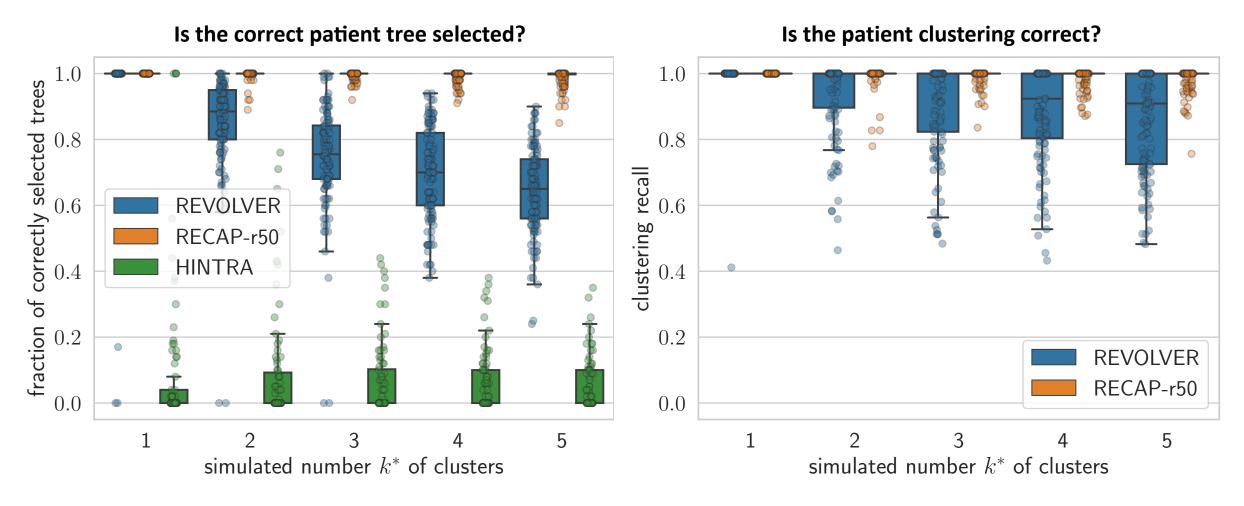
of patients in cohort: 50 or 100

RECAP improves performance, especially with many patient subtypes, on simulated data

Is the correct patient tree selected?

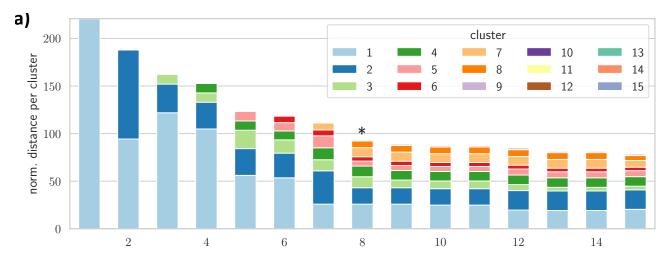


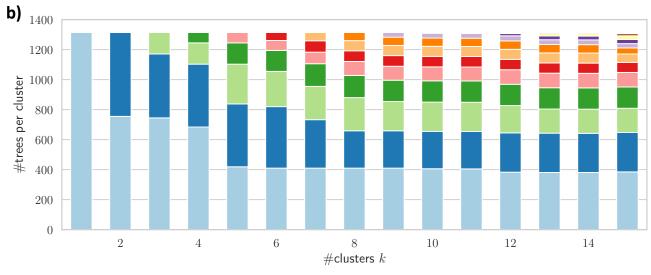
RECAP improves performance, especially with many patient subtypes, on simulated data



RECAP finds clusters in breast cancer cohort

- 1,315 patients with SNVs in copy neutral regions
- 1 to 6,332 trees per patient calculated using SPRUCE
- Restricted to 8 mutations, occurring in >100 patients
- Identified 8 clusters with 55 to 400 patients in each



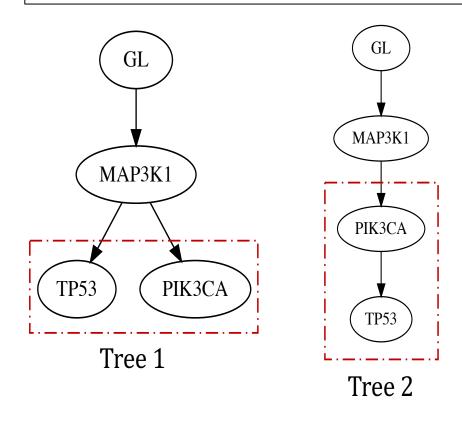


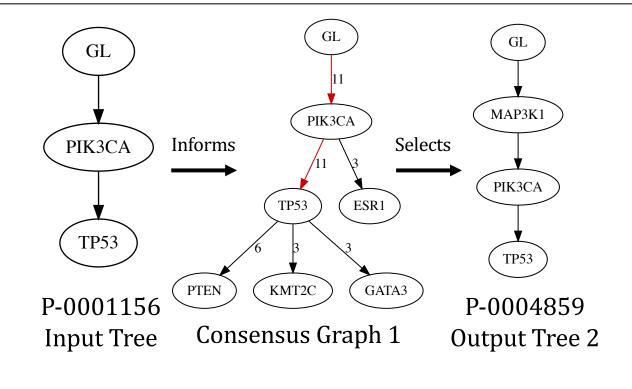
Raw data from [Razavi et al., 2018] ECCB 2020

RECAP resolves ambiguity for patient P-0004859

P-0004859 Input Trees

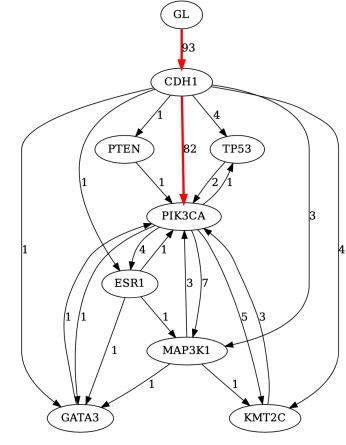
RECAP Outputs Selection





RECAP recovers known cancer subtype based on evolutionary trajectories

- Khakabimamaghani et al. (2019) previously used HINTRA to analyze this dataset
 - Manually split patients into four subtypes based on receptor status
 - In the HR+/HER2- subtype, found CDH1 commonly precedes PIK3CA.
- RECAP finds this subtype de novo in Cluster 7.
 - Consensus tree has CDH1 as parent of PIK3CA
 - 87 out of 93 patients (93.5%) in Cluster 7 belong to the HR+/HER2- subtype.



RECAP Cluster 7 Consensus Graph

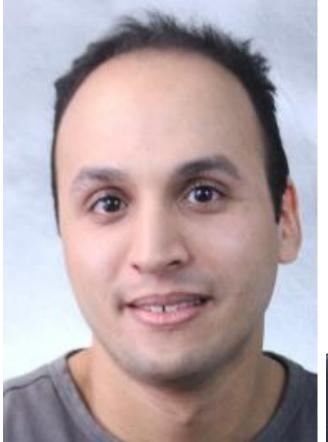
Conclusion and discussion

RECAP leverages common patterns of evolution to simultaneously resolve ambiguities in sequencing data and identify cancer subtypes.

RECAP expands on previous work by testing for different subtypes and running on varying mutation sets along with mutation clusters.

MCCT is an adaptable framework leading to avenues of future work (e.g., changing distance metric, consensus graph, evolutionary model).

Availability: https://github.com/elkebir-group/RECAP



Acknowledgements

Co-authors (pictured above)
Layla Oesper for helpful discussions
El-Kebir lab for thoughtful feedback
NSF (CCF 18-50502 to MEK)

