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Evolution in Cancer
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Clonal Evolution Theory of Cancer
[Nowell, 1976]



Phylogenetic Trees in Cancer
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Phylogenies have potential to improve
stratification of cancer patients into subtypes

Goal: Find repeated patterns defined by
ordering of recurrent driver mutations
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Phylogenies have potential to improve
stratification of cancer patients into subtypes

Goal: Find repeated patterns defined by
ordering of recurrent driver mutations

Challenge: Obfuscated by alternative

phylogenies at the individual patient level
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Prior work on inferring phylogenies and finding
evolutionary patterns using patient cohorts

REVOLVER [Caravagna et al., Nat. Methods 2018]
Hintra [Khakabimamaghani et al., Bioinformatics/ISMB 2019]

e Current methods do not account for

e Current methods do not to large patient trees.

* Current methods have trouble dealing with varying
well as
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Our approach

We pose an optimization problem (Multiple Choice Consensus Tree)
and algorithm (Revealing Evolutionary Consensus Across Patients).
Our approach leverages of evolution
found in of patients

to in patient data.



Multiple Choice Consensus Tree (MCCT) Problem
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Multiple Choice Consensus Tree (MCCT) Problem

Inputs

Output

A set of possible
trees for each
patient

Parameter k
for desired
number of

clusters
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a tree S; € TJ; for each patient i,




Multiple Choice Consensus Tree (MCCT) Problem
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A set of possible
trees for each
patient
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Multiple Choice Consensus Tree (MCCT) Problem

Inputs Output
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Multiple Choice Consensus Tree (MCCT) Problem

Inputs Output
== o
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Distance function accounts for varying
mutation sets and tree sizes
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RECAP: Summary of results

: Proved MCCT NP-Hard via a reduction to 3-SAT and proposed
gradient descent heuristic RECAP with model selection to use in practice.

: RECAP allows for different patient subtypes,
different mutation sets, scales to larger sets of mutations, and includes a DP
subroutine to handle mutation clusters.

: RECAP outperforms existing methods on simulated
data where there are different underlying subtypes and resolves ambiguity
for patient phylogenies on biological data.



Simulation procedure allows patient subtypes

Randomly draw patient clustering

Subtype 1 Subtype k

Construct cluster consensus tree by using Priifer
sequence on random subset of mutations

Repeated Repeated
e na

Generate patient trees by simulating bulk
sequencing experiment seeded by consensus tree
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parameterized by four variables:
# of mutations across cohort: 5 or 12
# of mutations in patient trees: 5, 7, or 12
# of clusters in ground truth: 1to 5

# of patients in cohort: 50 or 100




RECAP improves performance, especially with

many patient subtypes, on simulated data

Is the correct patient tree selected?
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fraction of correctly selected trees

RECAP improves performance, especially with
many patient subtypes, on simulated data
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RECAP finds clusters in breast cancer cohort

* 1,315 patients with SNVs in
copy neutral regions

calculated using SPRUCE

e Restricted to 8 mutations,
occurring in >100 patients

with 55
to 400 patients in each

Raw data from [Razavi et al., 2018]
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RECAP resolves ambiguity for patient P-0004859
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RECAP recovers known cancer subtype based

on evolutionary trajectories

* Khakabimamaghani et al. (2019) previously
used HINTRA to analyze this dataset

* Manually split patients into four subtypes based
on receptor status

* In the HR+/HER2- subtype, found CDH1
commonly precedes PIK3CA.

e RECAP in Cluster 7.

* Consensus tree has CDH1 as parent of PIK3CA

e 87 out of 93 patients (93.5%) in Cluster 7 belong
to the HR+/HER2- subtype.

RECAP Cluster 7 Consensus Graph



Conclusion and discussion

RECAP to simultaneously resolve
ambiguities in sequencing data and identify cancer subtypes.

RECAP by testing for different subtypes and
running on varying mutation sets along with mutation clusters.

MCCT is an leading to avenues of future work (e.g.,
changing distance metric, consensus graph, evolutionary model).

Availability: https://github.com/elkebir-group/RECAP
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