Counting and Sampling Problems in Computational Biology

Mohammed El-Kebir, Jackie Oh, Yuanyuan Qi and Palash Sashittal
Department of Computer Science, University of Illinois, Urbana Champaign

MCW 2020, July 9th, 2020
Combinatorial Optimization in Computational Biology

- How similar are genome sequences? \(\rightarrow\) Edit Distance
- What is the evolutionary history of all species? \(\rightarrow\) Steiner Tree

Problem \(\Pi\): Given input \(X\) find output \(Y\) such that \(Z\).
Combinatorial Optimization in Computational Biology

- How similar are genome sequences? \(\Rightarrow \) Edit Distance
- What is the evolutionary history of all species? \(\Rightarrow \) Steiner Tree

Problem Π: Given input X find output Y such that Z.

Challenge 1: Optimization problems inspired by biology often NP-hard

Integer linear programming

Space of feasible solutions $\Pi(X)$
Combinatorial Optimization in Computational Biology

- How similar are genome sequences? \(\rightarrow \) Edit Distance
- What is the evolutionary history of all species? \(\rightarrow \) Steiner Tree

Problem II: Given input \(X \), find output \(Y \) such that \(\Pi \).

Challenge 1: Optimization problems inspired by biology often NP-hard

Challenge 2: Multiple solutions due to
- Problem itself (integer objective function)
- Interest in near-optimal solutions

- Integer linear programming

\(\Pi(X) \) space of feasible solutions
Combinatorial Optimization in Computational Biology

- How similar are genome sequences? \(\rightarrow \) Edit Distance
- What is the evolutionary history of all species? \(\rightarrow \) Steiner Tree

Problem \(\Pi \): Given input \(X \) find output \(Y \) such that \(Z \).

Challenge 1: Optimization problems inspired by biology often NP-hard

Challenge 2: Multiple solutions due to
- Problem itself (integer objective function)
- Interest in near-optimal solutions

Integer linear programming

Satisfiability
Outline

Solving problems in computational biology via approximate model counting

- Reconstructing a tumor’s evolution from sequencing data
- Reconstructing transmissions during outbreaks
Outline

Solving problems in computational biology via approximate model counting

Reconstructing a tumor’s evolution from sequencing data

Reconstructing transmissions during outbreaks

Yuanyuan Qi
Jackie Oh
Cancer is an Evolutionary Process

Clonal Evolution Theory of Cancer
[Nowell, 1976]

Founder tumor cell with somatic mutation: (e.g. BRAF V600E)
Cancer is an Evolutionary Process

Clonal Evolution Theory of Cancer
[Nowell, 1976]

Clonal expansion
Cancer is an Evolutionary Process

Clonal Evolution Theory of Cancer
[Nowell, 1976]

New clones
Cancer is an Evolutionary Process

Clonal Evolution Theory of Cancer
[Nowell, 1976]

Intra-Tumor Heterogeneity

Phylogenetic Tree T

- Identify treatment targets
- Understand metastatic development
- Compare evolutionary patterns across patients
DNA Sequencing of Tumors

Bulk DNA Sequencing

S_1 S_2 S_3

n mutations

m samples

$S_1 (0.8 \ 0.8 \ 0.8 \ 0.0 \ 0.0 \ 0.0)$

$S_2 (0.7 \ 0.6 \ 0.0 \ 0.6 \ 0.0 \ 0.0)$

$S_3 (0.8 \ 0.0 \ 0.0 \ 0.0 \ 0.6 \ 0.4)$

Variant allele frequency (VAF): 0.8

GGAGGAG
GGAGTGG
GGAGGT
GGAGTGGGA
GGAGCAG

…GTAAGACGTGGCAGTGGACGA...

[El-Kebir et al., Bioinformatics/ISMB 2015]
Perfect Phylogeny Mixture (PPM)

Given F, find U and B such that $F = UB$
Sampling PPM Solutions

- PPM is NP-Complete (El-Kebir et al., 2015)
- \#PPM is \#P-Complete (Qi et al., 2019)

[Qi et al., Algorithms in Molecular Biology, 2019]
SAT Formulation

Constraints:
- Unique root
- Unique parents
- Cycle prevention
- Sum condition

Complexity:
- $O(n|E| + Nm|E|)$ variables
- $O(|E|^2 + Nm|E|)$ clauses

Sum condition: frequency of parent \geq sum of frequencies of children

Frequency Matrix F:

- s_1 (0.8 0.5 0.3 0.2)

Ancestry Graph G:

- $f_{1,1} = 0.8 r_1$
- $f_{1,2} = 0.5 r_2$
- $f_{1,3} = 0.3 r_3$
- $f_{1,4} = 0.3 r_4$

- $\left(r_1 \lor r_2 \lor r_3 \lor r_4\right)$
- $\left(\neg r_1 \lor \neg r_2\right)$
- $\left(\neg r_1 \lor \neg r_3\right)$
- $\left(\neg r_1 \lor \neg r_4\right)$
- $\left(\neg r_2 \lor \neg r_3\right)$
- $\left(\neg r_2 \lor \neg r_4\right)$
- $\left(\neg r_3 \lor \neg r_4\right)$

- $\left(r_1 \lor e_1 \lor e_2\right)$
- $\left(\neg r_1 \lor \neg e_1\right)$
- $\left(\neg r_1 \lor \neg e_2\right)$
- $\left(\neg e_1 \lor \neg e_2\right)$

[Qi and El-Kebir, In preparation]
Sampling using UniGen v2

Sampling results using SAT formulation

Sampling results by PhyloWGS [Deshwar et al., 2015]

[Qi and El-Kebir, In preparation]
DNA Sequencing of Tumors (2/2)

Bulk DNA Sequencing ($)

- S_1, S_2, S_3
- n mutations
- s_1: 0.8 0.8 0.8 0.0 0.0 0.0
- s_2: 0.7 0.6 0.0 0.6 0.0 0.0
- s_3: 0.8 0.0 0.0 0.0 0.6 0.4

Variant allele frequency (VAF): 0.8

- GA, GAT
- A, GATGG
- G, GTGG
- GAATGG

...GTAAGACGTGGACAGTGACGA...

Single-cell DNA Sequencing ($$)$$

- c_1: 1 0 0 0 0 0
- c_2: 1 1 1 0 0
- c_3: 0 0 0 1 0
- c_4: 1 0 0 1 0
- c_5: 1 ? 0 1 1
- c_6: 1 0 0 1 0

Legend:

- 0: False Negative
- 1: False Positive
- ?: Missing Data

17
Phylogeny Inference from Single-cell Data

Goal: Given single-cell sequencing data, sample possible phylogenetic trees

Requirement: Evolutionary model for somatic mutations
Infinite Sites Assumption vs k-Dollo Model

- **Infinite Sites Assumption**: No parallel evolution of SNVs, no loss of SNVs.
 - SCITE [Jahn et al. 2016]
 - OncoNEM [Ross and Markowetz, 2016]

- **k-Dollo Parsimony Model**: No parallel evolution of SNVs, SNV can be lost up to k times.

SNVs can be **lost** due to CNAs

Copy number loss

Infinite Sites Assumption:
- No parallel evolution of SNVs
- No loss of SNVs
- SCITE [Jahn et al. 2016]
- OncoNEM [Ross and Markowetz, 2016]

k-Dollo Parsimony Model:
- No parallel evolution of SNVs
- SNV can be lost up to k times

We will use the 1-Dollo model, where $k=1$
k-Dollo Phylogeny Flip and Cluster (k-DPFC) problem. Given matrix $D \in \{0,1,?\}^{m \times n}$, error rates $\alpha, \beta \in [0,1]$, integers $k, s, t \in \mathbb{N}$, find matrix $B \in \{0,1\}^{m \times n}$ and tree T such that: (1) B has at most s unique rows and at most t unique columns; (2) $\Pr(D \mid B, \alpha, \beta)$ is maximum; and (3) T is a k-Dollo phylogeny for B.

\[
\Pr(D \mid B, \alpha, \beta) = \prod_{p=1}^{m} \prod_{c=1}^{n} \left\{ \begin{array}{ll}
\alpha, & d_{p,c} = 1 \text{ and } b_{p,c} = 0 \\
1 - \alpha, & d_{p,c} = 1 \text{ and } b_{p,c} = 1, \\
\beta, & d_{p,c} = 0 \text{ and } b_{p,c} = 1, \\
1 - \beta, & d_{p,c} = 0 \text{ and } b_{p,c} = 0, \\
1, & d_{p,c} = ?
\end{array} \right.
\]

[El-Kebir, Bioinformatics/ECCB 2018]
SAT Formulation

Variables

False positive and false negatives

\[\alpha_{i,j}, i \in [m], j \in [n] \]
\[\beta_{i,j}, i \in [m], j \in [n] \]

Losses

\[d_{i,j}, i \in [m], j \in [n] \]

Clustering (determine duplicate rows/columns)

\[c_j, j \in [m] \]
\[x_{i,k,l}, i \in [m], k, l \in [n], k < l \]
\[r_i, l \in [n] \]
\[y_{i,j,k}, i, j \in [m], l \in [n], i < j \]
\[p_{i,j}, i, j \in [m], i < j \]
\[q_{k,l}, k, l \in [n], k < l \]

Number of variables: \(O(m^2n + mn^2) \)

Clauses

Enforce absence of forbidden submatrices

- Enforce that any submatrix of A cannot equal any of the 25 submatrices
- Allow this constraint to be violated if a row or column of the submatrix is a duplicate

\[\neg \beta_{2,1} \land \neg d_{2,1} \]
\[\beta_{3,1} \]
\[\neg \beta_{1,2} \land \neg d_{1,2} \]
\[d_{2,2} \]
\[\beta_{3,2} \]
\[\lor c_1 \lor c_2 \lor r_1 \lor r_2 \lor r_3 \]

Determine whether two rows or columns are equal

Bound the number of false positives and false negatives

Enforce the number of cell and mutation clusters

- Encode sum of binary variables as a binary vector using a half/full adder

Number of clauses: \(O(m^3n^2 + n^3) \)

[Oh and El-Kebir, In preparation]
Results

Simulations show:

- Runtime is reduced by providing the set of known allowed losses
 - Supplementing SCS data with copy number data could help improve runtime
- Runtime is roughly proportional to the number of solutions to a given formula
- DolloSAT is not yet feasible for real datasets (m > 100 cells)
 - Currently working on a cutting planes approach to reduce runtime

[Oh and El-Kebir, In preparation]
Outline

Solving problems in computational biology via approximate model counting

Reconstructing a tumor’s evolution from sequencing data

Reconstructing transmissions during outbreaks
Evolution & Transmission during an Outbreak

Evolutionary history: Phylogeny

Transmission history: Transmission graph

https://nextstrain.org/ncov?l=radial
Timed Phylogeny:
A rooted tree T whose vertices are labeled by time-stamps $\tau : V(T) \to \mathbb{R}_{\geq 0}$ s.t. $\tau(u) < \tau(v)$ for all pairs (u, v) where u is an ancestor of v.

Directed Transmission Inference (DTI): Input

[Sashittal and El-Kebir, Bioinformatics/ISMB 2020]
Timed Phylogeny:
A rooted tree T whose vertices are labeled by time-stamps $\tau : V(T) \to \mathbb{R}_{\geq 0}$ s.t. $\tau(u) < \tau(v)$ for all pairs (u, v) where u is an ancestor of v.

Epidemiological Data:
For each host $s \in \Sigma$, we have an entrance time $\tau_e(s)$ and removal time $\tau_r(s)$ and leaves are labeled by hosts.
Directed Transmission Inference (DTI): Input

Timed Phylogeny:
A rooted tree T whose vertices are labeled by time-stamps $\tau : V(T) \rightarrow \mathbb{R}_{\geq 0}$ s.t. $\tau(u) < \tau(v)$ for all pairs (u, v) where u is an ancestor of v.

Epidemiological Data:
For each host $s \in \Sigma$, we have an entrance time $\tau_e(s)$ and removal time $\tau_r(s)$ and leaves are labeled by hosts.

Contact Map:
A directed graph with vertex set given by the set of hosts Σ indicating putative transmission pairs.

[Sashittal and El-Kebir, Bioinformatics/ISMB 2020]
Directed Transmission Inference (DTI): Output

Timed Phylogeny:
A rooted tree T whose vertices are labeled by time-stamps $\tau : V(T) \rightarrow \mathbb{R}^{\geq 0}$ s.t. $\tau(u) < \tau(v)$ for all pairs (u,v) where u is an ancestor of v.

Epidemiological Data:
For each host $s \in \Sigma$, we have an entrance time $\tau_e(s)$ and removal time $\tau_r(s)$ and leaves are labeled by hosts.

Contact Map:
A directed graph with vertex set given by the set of hosts Σ indicating putative transmission pairs.

Internal Vertex Labeling and Transmission Tree:
A host labeling of a timed phylogeny T is a function $\ell : L(T) \rightarrow \Sigma$, assigning a host $\ell(u)$ to each vertex u of T such that the resulting transmission network S is a spanning tree of the contact map C.

[Sasihittal and El-Kebir, Bioinformatics/ISMB 2020]
Directed Transmission Inference (DTI): Output

Timed Phylogeny:
A rooted tree T whose vertices are labeled by time-stamps $\tau : V(T) \rightarrow \mathbb{R}^{\geq 0}$ s.t. $\tau(u) < \tau(v)$ for all pairs (u, v) where u is an ancestor of v.

Epidemiological Data:
For each host $s \in \Sigma$, we have an entrance time $\tau_e(s)$ and removal time $\tau_r(s)$ and leaves are labeled by hosts.

Contact Map:
A directed graph with vertex set given by the set of hosts Σ indicating putative transmission pairs.

Internal Vertex Labeling and Transmission Tree:
A host labeling of a timed phylogeny T is a function $\ell : L(T) \rightarrow \Sigma$, assigning a host $\ell(u)$ to each vertex u of T such that the resulting transmission network S is a spanning tree of the contact map C.

[Sashittal and El-Kebir, Bioinformatics/ISMB 2020]
Directed Transmission Inference (DTI): Output

Timed Phylogeny:
A rooted tree T whose vertices are labeled by time-stamps $\tau : V(T) \rightarrow \mathbb{R}_{\geq 0}$ s.t. $\tau(u) < \tau(v)$ for all pairs (u, v) where u is an ancestor of v.

Epidemiological Data:
For each host $s \in \Sigma$, we have an entrance time $\tau_e(s)$ and removal time $\tau_r(s)$ and leaves are labeled by hosts.

Contact Map:
A directed graph with vertex set given by the set of hosts Σ indicating putative transmission pairs.

Internal Vertex Labeling and Transmission Tree:
A host labeling of a timed phylogeny T is a function $\ell : L(T) \rightarrow \Sigma$, assigning a host $\ell(u)$ to each vertex u of T such that the resulting transmission network S is a spanning tree of the contact map C.

[Sashittal and El-Kebir, Bioinformatics/ISMB 2020]
We show that Transmission Tree Inference Problem is \textbf{NP-complete} and the corresponding counting problem is \textbf{#P-complete} by reduction from the \textbf{1-in-3SAT} problem.

[Sashittal and El-Kebir, Bioinformatics/ISMB 2020]
Sampling DTI Solutions

Naïve Rejection Sampling

SAT based Almost Uniform Sampling (UniGen)

Vertex Labeling

\[
\text{onehot} \left(\{x_{i,1}, \ldots, x_{i,m}\} \right), \quad \forall v_i \in V(T).
\]

Transmission Edges

\[
(x_{i,s} \land x_{j,t}) \implies c_{s,t}, \quad \forall (v_i, v_j) \in E(T) \text{ and } s,t \in \Sigma.
\]

Root Host Constraint

\[
x_{i,t} \implies \neg c_{s,t}, \quad \forall s,t \in \Sigma, s \neq t,
\]

Unique Infector Constraint

\[
\neg c_{s,t} \lor \neg c_{s,t'}, \quad t,t' \in \Sigma \text{ and } t \neq t'
\]
\[
\neg x_{i,s} \lor \neg x_{j,t} \lor \neg x_{k,s} \lor \neg x_{l,t}, \quad \forall s,t \in \Sigma, s \neq t.
\]

[Sashittal and El-Kebir, Bioinformatics/ISMB 2020]
Sampling DTI Solutions

Not Efficient

Naïve Rejection Sampling

Efficient and Accurate

\(O(nm + m^2)\) variables and \(O(nm^2 + n^2m^2)\) constraints

Vertex Labeling

\[\text{onehot}(\{x_{i,1}, \cdots, x_{i,m}\}), \forall v_i \in V(T).\]

Transmission Edges

\[(x_{i,s} \land x_{j,t}) \Rightarrow c_{s,t}, \forall (v_i, v_j) \in E(T) \text{ and } s, t \in \Sigma.\]

Root Host Constraint

\[x_{i,t} \Rightarrow \neg c_{s,t}, \forall s, t \in \Sigma, s \neq t,\]

Unique Infector Constraint

\[
\begin{align*}
\neg c_{s,t} \lor \neg c_{s,t'}, & \quad t, t' \in \Sigma \text{ and } t \neq t' \\
\neg x_{i,s} \lor \neg x_{j,t} \lor \neg x_{k,s} \lor \neg x_{l,t}, & \quad \forall s, t \in \Sigma, s \neq t.
\end{align*}
\]

[Sashittal and El-Kebir, Bioinformatics/ISMB 2020]
Simulation Results

Simulations (with complete sampling) show that:

(a) **Weak Transmission Bottleneck** needs to be considered for inferring and sampling the solutions.

(b) **Naïve sampling** is infeasible for large outbreaks

(c) **TiTUS** uniformly samples the solution space

[Sashittal and El-Kebir, Bioinformatics/ISMB 2020]
HIV Outbreak in 1988-2006 among 11 patients

\[\alpha = 0.01 \]

TiTUS reconstruct the transmission history of a HIV outbreak:

(a) We generate 100,000 samples from the solution space and build a consensus of the selected solutions

(b) Consensus transmission tree recovers 9/10 transmission pairs in the outbreak

(c) Our method is robust for the choice of percentile threshold

[Sashittal and El-Kebir, Bioinformatics/ISMB 2020]
Conclusions and Future Directions

Solving problems in computational biology via approximate model counting

- Cutting planes & column generation
- Weighted model counting
- Guidance/best practices on efficient SAT formulations
Acknowledgements

This work was funded by the National Science Foundation (CCF-1850502 and CCF-2027669)

• Kuldeep Meel
• Mate Soos

El-Kebir group
• Jackie Oh
• Palash Sashittal
• Yuanyuan Qi
• Chuanyi Zhang

• Jiaqi Wu
• Juho Kim
• Leah Weber
• Nuraini Aguse
• Sarah Christensen
BACKUP
Problem Statement

Inputs:
- Binary matrix $B \in \{0, 1\}^{m \times n}$ where entry $b_{i,j} = 1$ if and only if cell i contains mutation j
- A set L of mutations that can be lost
- Number of mutation clusters s
- Number of cell clusters t
- False positive rate α, false negative rate β

Desired output:
A rooted tree T that meets the following conditions:
- Each vertex is labeled by a vector $\nu \in \{0, 1\}^{t}$
- The root of T is labeled by the zero vector
- Each mutation in $[n]$ labels exactly one gain edge
- Each mutation in L labels at most one loss edge
- Each leaf of T is labeled by a row of matrix $C \in \{0, 1\}^{s \times t}$
 - C is the result of correcting errors in B and clustering so that there are s distinct rows and t distinct columns

A matrix is a 1-Dollo Completion if and only if it does not contain any forbidden submatrices.

There are 25 forbidden submatrices [El Kebir et al.]
Background

Accurate inference of **transmission networks** if pivotal for
• real-time outbreak management,
• public health policies.

Traditional epidemiological approaches involve:
• fieldwork and interviews,
• contact tracing.

With decreasing costs of genomic sequencing, **molecular epidemiology** has become indispensable.
(e.g. ~2500 SARS-CoV-2 sequences on GISAID.)
Challenges in Transmission Network Inference

- **Incomplete lineage sorting**: pathogen evolutionary history does not match the transmission history of the outbreak.

- High mutation rates and/or long incubation times result in within-host diversity.

- Further complication arises due to multi-strain infection or weak transmission bottleneck.
Simulation Results

(a) Weak Transmission Bottleneck needs to be considered for inferring and sampling the solutions.

(b) Naïve sampling is infeasible for large outbreaks

(c) TiTUS uniformly samples the solution space
Selection Criteria

Following selection criteria are proposed (for a completely sampled outbreak):

(a) Number of transmitted strains in the outbreak
(b) Number of unsampled lineages in the outbreak
(c) We find that optimal performance is achieved at percentile threshold of 0.01
<table>
<thead>
<tr>
<th>Method</th>
<th>Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple Recursion</td>
<td>Contact Map</td>
</tr>
<tr>
<td>TiTUS</td>
<td>Contact Map + Unique Infector</td>
</tr>
<tr>
<td>STraTUS[2]</td>
<td>Contact Map + Unique Infector + Strong Transmission Bottleneck</td>
</tr>
<tr>
<td>Kenah[3]</td>
<td>Contact Map + Unique Infector + Strong Transmission Bottleneck + Order of Infection</td>
</tr>
</tbody>
</table>