PhyDOSE: Design of Follow-up Single-cell Sequencing Experiments of Tumors

Leah Weber1*, Nuraini Aguse1*, Nicholas Chia2,3 and Mohammed El-Kebir1

1 University of Illinois at Urbana-Champaign, Department of Computer Science
2 Microbiome Program, Center for Individualized Medicine, Mayo Clinic
3 Division of Surgical Research, Department of Surgery, Mayo Clinic

RECOMB-CCB 2020
June 18, 2020

*These authors contributed equally to this work
Cancer is an evolutionary process

- Founder Cell
- Advantageous Mutations
- Clonal Expansion
- Heterogeneous Tumor
Cancer is an evolutionary process

- Founder Cell
- Advantageous Mutations
- Clonal Expansion
- Heterogeneous Tumor

Phylogenetic Tree

- Identify treatment targets
- Understand metastatic development
- Compare evolutionary patterns across patients
DNA sequencing of tumors

Bulk DNA Sequencing ($)

Single-cell DNA Sequencing ($$$)
DNA sequencing of tumors

Bulk DNA Sequencing ($)
Single-cell DNA Sequencing ($$$)

Cancer Cell Fractions

1 0.09 0.36 0.45 0.25
DNA sequencing of tumors

Bulk DNA Sequencing ($)

Single-cell DNA Sequencing ($$$)

Cancer Cell Fractions

Solution Space
DNA sequencing of tumors

Bulk DNA Sequencing ($)

Cancer Cell Fractions

<table>
<thead>
<tr>
<th>Cell Fraction</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>1</td>
</tr>
<tr>
<td>T2</td>
<td>0.09</td>
</tr>
<tr>
<td>T3</td>
<td>0.36</td>
</tr>
<tr>
<td>T4</td>
<td>0.45</td>
</tr>
<tr>
<td>T5</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Single-cell DNA Sequencing ($$$)

Solution Space
DNA sequencing of tumors

Bulk DNA Sequencing ($)

Cancer Cell Fractions

<table>
<thead>
<tr>
<th>Fraction</th>
<th>1</th>
<th>0.09</th>
<th>0.36</th>
<th>0.45</th>
<th>0.25</th>
</tr>
</thead>
</table>

Single-cell DNA Sequencing ($$$)

Solution Space

<table>
<thead>
<tr>
<th>Cell</th>
<th>c1</th>
<th>c2</th>
<th>c3</th>
<th>c4</th>
<th>c5</th>
<th>c6</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>c1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>c2</td>
<td>1</td>
<td>?</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>c3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>c4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>c5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>c6</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

False Negative
Phylogeny inference from DNA sequencing

<table>
<thead>
<tr>
<th>Method</th>
<th>Bulk Sequencing Data</th>
<th>Single-cell Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCITE</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>[Jahn et al., 2016]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OncoNEM</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>[Ross & Markowetz, 2017]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPhyR</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>[El-Kebir, 2018]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiCloneFit</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>[Zafar et al., 2019]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PhiSCS</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>[Malikic et al., 2019a]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-SCITE</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>[Malikic et al. 2019b]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

How many single-cells should you sequence to minimize costs?

7? 1 million?
Key idea: Design a cost-effective single-cell sequencing experiment using bulk DNA data.

Input Parameters

- **# of cells to sequence**
 - 1
 - 0.09
 - 0.36
 - 0.45
 - 0.25

Cancer Cell Fractions

- T_1
- T_2
- T_3

PhyDOSE

of cells to sequence
Outline

- Problem statement
- Methods
- Complexity
- Simulation study
- Application to real data
- Conclusions and future work
Key idea: Bulk data guides cost effective single-cell experiment design

Single-cell Sequencing Power Calculation (SCS-PC)

Given a set \mathcal{T} of candidate phylogenies, frequencies f
Key idea: Bulk data guides cost effective single-cell experiment design

SINGLE-CELL SEQUENCING POWER CALCULATION (SCS-PC)

Given a set \mathcal{T} of candidate phylogenies, frequencies \mathbf{f} and confidence level γ.

<table>
<thead>
<tr>
<th>Cancer Cell Fractions \mathbf{f}</th>
<th>Confidence Level γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0.09 0.36 0.45 0.25</td>
<td>$\gamma = 0.95$</td>
</tr>
</tbody>
</table>
Key idea: Bulk data guides cost effective single-cell experiment design

Single-cell Sequencing Power Calculation (SCS-PC)

Given a set \mathcal{T} of candidate phylogenies, frequencies \mathbf{f} and confidence level γ, find the **minimum number k^* of single cells** needed to determine the true phylogeny T among \mathcal{T} with probability at least γ.

<table>
<thead>
<tr>
<th>Cancer Cell Fractions \mathbf{f}</th>
<th>Confidence Level</th>
<th>$\gamma = 0.95$</th>
<th>k^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 0.09, 0.36, 0.45, 0.25</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Solving the SCS-PC

T_1 T_3 T_2

True phylogeny unknown

T
Key idea: condition on each tree being the true tree and solve SCS-PC

\[T = T_1 \]

SCS Power Calculation for Phylogeny \(T \)

(T-SCS-PC)

Given a set \(\mathcal{T} \) of candidate phylogenies and a phylogeny \(T \in \mathcal{T} \), frequencies \(\mathbf{f} \) and confidence level \(\gamma \),

\[
\begin{array}{c|c|c|c|c|c}
\text{Cancer Cell Fractions} & 1 & 0.09 & 0.36 & 0.45 & 0.25 \\
\hline
\text{Confidence Level} & \gamma = 0.95
\end{array}
\]
Key idea: condition on each tree being the true tree and solve SCS-PC

\[T = T_1 \]

SCS Power Calculation for Phylogeny \(T \) (\(T \)-SCS-PC)

Given a set \(\mathcal{T} \) of candidate phylogenies and a phylogeny \(T \in \mathcal{T} \), frequencies \(\mathbf{f} \) and confidence level \(\gamma \), find the minimum number \(k^* \) of single cells needed such that the probability of a successful SCS experiment is greater than or equal to \(\gamma \).

<table>
<thead>
<tr>
<th>Cancer Cell Fractions (\mathbf{f})</th>
<th>Confidence Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0.09 0.36 0.45 0.25</td>
<td>(\gamma = 0.95)</td>
</tr>
</tbody>
</table>

\[k^* = \arg \min_k P(\text{Success} \mid T, \mathcal{T}, k, \mathbf{f}) \geq \gamma \]
What is a successful experiment given T?

Cancer Cell Fractions f

T

SCOPIT

[Davis et al. 2019]
What is a successful experiment given T?

Cancer Cell Fractions f

$1 \quad 0.09 \quad 0.36 \quad 0.45 \quad 0.25$

T

6 cells

k

Clonal Prevalence u

$0.1 \quad 0.09 \quad 0.36 \quad 0.2 \quad 0.25$

p

Success $\sim \text{Mult}(p, k)$

$SCOPIT$

[Davis et al. 2019]
What is a successful experiment given T?

Cancer Cell Fractions f

T

6 cells

k

Clonal Prevalence u

p

Success $\sim Mult(p, k)$

SCOPIT [Davis et al. 2019]
What is a successful experiment given T?

Cancer Cell Fractions f

T -> 6 cells

Clonal Prevalence u

p

Success \sim Mult(p, k)

But we don’t always need to observe all clones for a successful experiment!

SCOPIT
[Davis et al. 2019]
Key idea: distinguishing feature

\[T = T_1 \]
Key idea: distinguishing feature

Success is defined as observing a distinguishing feature.

\[T = T_1 \]
Probabilistic model

Cancer Cell Fractions f

$\begin{array}{l}
1 \quad 0.09 \\
0.36 \\
0.45 \\
0.25 \\
\end{array}$

T

3 cells

$\begin{array}{l}
? \\
? \\
? \\
\end{array}$

Clonal Prevalence u

$\begin{array}{l}
0.09 \\
0.36 \\
0.55 \\
\end{array}$

p

$\begin{array}{l}
0 \\
0 \\
3 \\
\end{array}$

$\begin{array}{l}
0 \\
1 \\
2 \\
\end{array}$

Success is defined as observing a distinguishing feature.
Probabilistic model

Cancer Cell Fractions f

| | 1 | 0.09 | 0.36 | 0.45 | 0.25 |

Success is defined as observing a distinguishing feature.

Success $\sim \text{Mult}(p, k)$

$\text{Clonal Prevalence } u$

| | 0.09 | 0.36 | 0.55 |

<table>
<thead>
<tr>
<th></th>
<th>prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>1</td>
<td>0.11</td>
</tr>
<tr>
<td>1</td>
<td>0.03</td>
</tr>
<tr>
<td>2</td>
<td>0.009</td>
</tr>
</tbody>
</table>
Power calculation for fixed tree T

Confidence Level

$\gamma = 0.95$

$k^* = \arg\min_k P(\text{Success} \mid T, \mathcal{T}, k, f) \geq \gamma$

Cancer Cell Fractions f

| 1 | 0.09 | 0.36 | 0.45 | 0.25 |

Clonal Prevalence u

| 0.09 | 0.36 | 0.55 |

p
Power calculation for fixed tree T

Cancer Cell Fractions f

| 1 | 0.09 | 0.36 | 0.45 | 0.25 |

T

Confidence Level $\gamma = 0.95$

? cells

Clonal Prevalence u

0.09 0.36 0.55

$p = \text{?}$

$k^* = 32$

$k^* = \arg\min_k P(\text{Success} \mid T, \mathcal{T}, k, f) \geq \gamma$

k prob.

| 3 | 0.15 |
| 4 | 0.25 |
| ... |
| 15 | 0.75 |
| 32 | 0.95 |

$k^* = 32$ is the solution to the T-SCS-PC problem.
Solving the SCS-PC

Taking the maximum yields and upper bound

\[k^* = 32 \]

\[k^*_1 = 32 \]
\[k^*_3 = 32 \]
\[k^*_2 = 4 \]

\(k^* = 32 \) is the solution to the SCS-PC problem.
Solving the SCS-PC

Taking the maximum yields and upper bound

\[k^* = 32 \]

Account for multiple distinguishing features

k* = 32 is the solution to the SCS-PC problem.

Adjust for false negatives
T-SCS-PC is NP-hard by reduction from Set Cover

Lemma: Let \((\mathcal{J}, T_0, f, \gamma = \epsilon)\) be the \(T\text{-SCS-PC}\) instance corresponding to Set Cover instance \((U, \mathcal{F})\). A minimum cover has size \(k^*\) if and only if \(k^*\) is the smallest integer such that

\[
\Pr(Y_{k^*} \mid u(T_0, f)) \geq \gamma
\]
Simulation design

- 100 replications
- SCOPIT comparison
- SPhyR phylogeny inference
- $\gamma = 0.95$
SCOPIT comparison

- 100 replications
- SCOPIT comparison
- SPhyR phylogeny inference
- $\gamma = 0.95$
Phylogeny inference with SPhyR

- 100 replications
- SCOPIT comparison
- SPhyR phylogeny inference
- $\gamma = 0.95$
Acute myeloid leukemia (AML) cohort

Morita et al. (2020) performed high throughput targeted microfluidic single cell DNA sequencing on a cohort of 77 patients with AML.

Based on the published variant allele frequencies, we enumerated between 2 and 316 candidate trees for 24 patients and used PhyDOSE to estimate k^*.

PhyDOSE k^* compared with the original number of cells sequenced

- Morita et al. (2020) performed high throughput targeted microfluidic single cell DNA sequencing on a cohort of 77 patients with AML.
- Based on the published variant allele frequencies, we enumerated between 2 and 316 candidate trees for 24 patients and used PhyDOSE to estimate k^*.

Number of Cells

Seq. $k^*(\gamma = 0.75)$ $k^*(\gamma = 0.95)$
PhyDOSE-IT and phydoser R package

Conclusions and future work

PhyDOSE Conclusions

- Proposes cost-efficient single-cell experiment design to yield high-fidelity phylogenies
- Agnostic to the type of single-cell sequencing technology used
- Available as both a web-application and an R package

Future Work

- Optimally determine the number of cells to sequence across multiple biopsies
- Explore evolutionary models beyond the infinite sites model
- Formulate and solve the RE-SCS-PC problem
 - Find out next time what it means to me... 😅
Acknowledgements

El-Kebir group

- Mohammed El-Kebir
- Nuraini Aguse
- Yuanyuan Qi
- Jiaqi Wu
- Sarah Christensen
- Palash Sashittal
- Juho Kim
- Jackie Oh
- Chuanyi Zhang

UIUC Center for Computational Biotechnology and Genomic Medicine (grant: CSN 1624790)

National Science Foundation (CCF-1850502)