SPhyR: Tumor Phylogeny Estimation from Single-Cell Sequencing Data under Loss and Error

Mohammed El-Kebir

Accepted at ECCB 2018
http://doi.org/10.1093/bioinformatics/bty589
Tumorigenesis: (i) Cell Mutation

Clonal Evolution Theory of Cancer
[Nowell, 1976]
Clonal Evolution Theory of Cancer
[Nowell, 1976]

Tumorigenesis: (i) Cell Mutation & (ii) Cell Division

Heterogeneous Tumor
Tumorigenesis: (i) Cell Mutation & (ii) Cell Division

Goal: Given single-cell DNA sequencing data, find phylogenetic tree T

Requirement: Evolutionary model
Somatic Mutations Occur at Different Genomic Scales

- Single Nucleotide Variant (SNV)
- Small Insertion / Deletion (indel)
- Copy-Number Aberration (CNA)
- Structural Variant (SV)
- Whole-Genome Duplication (WGD)
Infinite Sites Assumption is too Restrictive for SNVs

- **Single Nucleotide Variant (SNV)**
- **Small Insertion / Deletion (indel)**
- **Copy-Number Aberration (CNA)**
- **Structural Variant (SV)**
- **Whole-Genome Duplication (WGD)**

Infinite sites assumption:
- No parallel evolution of SNVs
- No loss of SNVs
- SCITE [Jahn et al. 2016]
- OncoNEM [Ross and Markowetz, 2016]

SNVs can be **lost** due to CNAs
Outline

• Perfect data (error free)
 • Problem statement
 • Combinatorial characterization of solutions
 • Exact algorithm
 • Results

• Real data (with errors)
 • Problem statement
 • Heuristic algorithm
 • Results

• Conclusions
k-Dollo Phylogeny (k-DP) Problem

Definition 1. A k-Dollo phylogeny T is a rooted, node-labeled tree subject to the following conditions.

1. Each node v of T is labeled by a vector $b_v \in \{0, 1\}^n$.
2. The root r of T is labeled by vector $b_r = [0, \ldots, 0]^T$.
k-Dollo Phylogeny (k-DP) Problem

Definition 1. A *k-Dollo phylogeny* T is a rooted, node-labeled tree subject to the following conditions.

1. Each node v of T is labeled by a vector $b_v \in \{0, 1\}^n$.
2. The root r of T is labeled by vector $b_r = [0, \ldots, 0]^T$.
3. For each character $c \in [n]$, there is exactly one *gain edge* (v, w) in T such that $b_{v, c} = 0$ and $b_{w, c} = 1$.
4. For each character $c \in [n]$, there are at most k *loss edges* (v, w) in T such that $b_{v, c} = 1$ and $b_{w, c} = 0$.
k-Dollo Phylogeny (k-DP) Problem

Definition 1. A *k-Dollo phylogeny* T is a rooted, node-labeled tree subject to the following conditions.

1. Each node v of T is labeled by a vector $b_v \in \{0, 1\}^n$.
2. The root r of T is labeled by vector $b_r = [0, \ldots, 0]^T$.
3. For each character $c \in [n]$, there is exactly one gain edge (v, w) in T such that $b_{v,c} = 0$ and $b_{w,c} = 1$.
4. For each character $c \in [n]$, there are at most k loss edges (v, w) in T such that $b_{v,c} = 1$ and $b_{w,c} = 0$.

k-Dollo Phylogeny problem (k-DP). Given a binary matrix $B \in \{0, 1\}^{m \times n}$ and parameter $k \in \mathbb{N}$, determine whether there exists a k-Dollo phylogeny for B, and if so construct one.
Theorem 3. Let $B \in \{0, 1\}^{m \times n}$. The following statements are equivalent.

1. There exists a k-Dollo phylogeny T for B.
2. There exists a k-Dollo completion A of B.
3. There exists a k-completion A of B, and perfect phylogeny T for A whose characters are consistent with $S[k]$.

Combinatorial Characterization of k-DP

Input Matrix B

```
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
```

k-Dollo Completion A

```
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
```

k-Dollo State Tree $S[k]$

k-Dollo Phylogeny T
Forbidden Submatrices in Solutions A to k-DP

$$\begin{pmatrix}
1 & 0 \\
0 & 1 \\
1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 2 \\
1 & 1 & 0 & 2 \\
1 & 1 & 1 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
2 & 0 & 2 & 0 \\
0 & 1 & 0 & 2 \\
1 & 1 & 1 & 2 \\
1 & 1 & 2 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 2 & 1 \\
0 & 2 & 0 & 2 \\
1 & 2 & 2 & 2 \\
2 & 2 & 2 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
2 & 1 \\
1 & 2 \\
2 & 2
\end{pmatrix}$$

$k = 0$

$k = 1$

Number of forbidden submatrices is $4k^4 + 8k^3 + 8k^2 + 4k + 1$

Open question: Hardness of deciding whether B admits a k-Dollo completion A
Results for k-DP

- Naive ILP does not scale and has $O(mnk)$ variables and $O(m^3n^2k^4)$ constraints
- Column and cutting plane generation
 - Introduce variables and constraints only when needed
- Simulations with 60 instances for each each m, n and k
Outline

• Perfect data (error free)
 • Problem statement
 • Combinatorial characterization of solutions
 • Exact algorithm
 • Results

• Real data (with errors)
 • Problem statement
 • Heuristic algorithm
 • Results

• Conclusions
k-Dollo Phylogeny Flip and Cluster (k-DPFC) problem. Given matrix $D \in \{0, 1, ?\}^{m \times n}$, error rates $\alpha, \beta \in [0, 1]$, integers $k, s, t \in \mathbb{N}$, find matrix $B \in \{0, 1\}^{m \times n}$ and tree T such that: (1) B has at most s unique rows and at most t unique columns; (2) $\Pr(D \mid B, \alpha, \beta)$ is maximum; and (3) T is a k-Dollo phylogeny for B.

$$\Pr(D \mid B, \alpha, \beta) = \prod_{p=1}^{m} \prod_{c=1}^{n} \begin{cases} \alpha, & d_{p,c} = 1 \text{ and } b_{p,c} = 0 \\ 1 - \alpha, & d_{p,c} = 1 \text{ and } b_{p,c} = 1, \\ \beta, & d_{p,c} = 0 \text{ and } b_{p,c} = 1, \\ 1 - \beta, & d_{p,c} = 0 \text{ and } b_{p,c} = 0, \\ 1, & d_{p,c} = ? \end{cases}$$
SPhyR: Single-cell Phylogeny Reconstruction

• Coordinate ascent:
 1. k-Means with random seed to obtain cell clustering π and SNV clustering ψ
 2. ILP to obtain maximum likelihood k-Dollo completion A given D, π and ψ
 3. Identify maximum likelihood π given A and ψ
 4. Identify maximum likelihood ψ given A and π
 5. Repeat until convergence

• Available on Github: https://github.com/elkebir-group/SPhyR
Simulation Results \((m = 50, n = 50, k = 1) \)
Simulation Results ($m = 50$, $n = 50$, $k = 1$)
Colorectal patient CRC1 [Leung et al., 2017]

\[m = 178 \text{ cells} \]

\[n = 17 \text{ SNVs} \]

\[\alpha = 0.0152 \]

\[\beta = 0.0789 \]

SCITE:

likelihood = -413.38

SPhyR:

likelihood = -450.70
Conclusions

• k-Dollo parsimony model strikes a balance between realistic and yet sufficiently constrained
• Solutions are integer matrix completions
• SPhyR outperformed existing methods

Future work:
• Include α and β into optimization
• Model selection for s, t and k
• Hardness is open