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Abstract. Tumors exhibit extensive intra-tumor heterogeneity, the pres-
ence of groups of cellular populations with distinct sets of somatic mu-
tations. This heterogeneity is the result of an evolutionary process, de-
scribed by a phylogenetic tree. The problem of reconstructing a phyloge-
netic tree T" given bulk sequencing data from a tumor is more complicated
than the classic phylogeny inference problem. Rather than observing the
leaves of T' directly, we are given mutation frequencies that are the result
of mixtures of the leaves of T'. The majority of current tumor phylogeny
inference methods employ the perfect phylogeny evolutionary model. In
this work, we show that the underlying PERFECT PHYLOGENY MIXTURE
combinatorial problem typically has multiple solutions. We provide a
polynomial-time computable upper bound on the number of solutions.
We use simulations to identify factors that contribute to and counteract
non-uniqueness of solutions. In addition, we study the sampling perfor-
mance of current methods, identifying significant biases.

1 Introduction

Cancer is characterized by somatic mutations that accumulate in a population
of cells, leading to the formation of genetically distinct clones within the same
tumor |19]. This intra-tumor heterogeneity is the main cause of relapse and
resistance to treatment [24]. The evolutionary process that led to the formation of
a tumor can be described by a phylogenetic tree whose leaves correspond to tumor
cells at the present time and whose edges are labeled by somatic mutations. To
elucidate the mechanisms behind tumorigenesis |22}24] and identify treatment
strategies [61/28], we require algorithms that accurately infer a phylogenetic tree
from DNA sequencing data of a tumor.

Most cancer sequencing studies, including those from The Cancer Genome
Atlas |12] and the International Cancer Genome Consortium [8], use bulk DNA
sequencing technology, where samples are a mixture of millions of cells. While
in classic phylogenetics, one is asked to infer a phylogenetic tree given its leaves,
with bulk sequencing data we are asked to infer a phylogenetic tree given mix-
tures of its leaves in the form of mutation frequencies. More specifically, one
first identifies a set of loci containing somatic mutations present in the tumor by
sequencing and comparing the aligned reads of a matched normal sample and
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Fig.1: Overview of the Perfect Phylogeny Mixture (PPM) problem.
By comparing the aligned reads obtained from bulk DNA sequencing data of a
matched normal sample and m tumor samples, we identify n somatic mutations
and their frequencies F' = [f,,c]. In the PPM problem, we are asked to factorize F
into a mixture matrix U and a complete perfect phylogeny matrix B, explaining
the composition of the m tumor samples and the evolutionary history of the
n mutations present in the tumor, respectively. Typically, an input frequency
matrix admits multiple distinct solutions. Here, matrix F' has three solutions:
(U,B), (U',B’) and (U"”, B"), where only (U, B) is the correct solution.

one or more tumor samples. Based on the number reads of each mutation locus
in a sample, we obtain mutation frequencies indicating the fraction of cells in
the tumor sample that contain each mutation. From these frequencies, the task
is to infer the phylogenetic tree under an appropriate evolutionary model that
generated the data.

The most commonly used evolutionary model in cancer phylogenetics is the
two-state perfect phylogeny model, where mutations adhere to the infinite sites
assumption . That is, for each mutation locus the
actual mutation occurred exactly once in the evolutionary history of the tumor
and was subsequently never lost. The underlying combinatorial problem of the
majority of current methods is the PERFECT PHYLOGENY MIXTURE (PPM)
problem. Given an m X n frequency matrix F, we are asked to explain the com-
position of the m tumor samples and the evolutionary history of the n mutations.
More specifically, we wish to factorize F' into a mixture matrix U and a perfect
phylogeny matrix B. Not only is this problem NP-complete , but multiple
perfect phylogeny trees may be inferred from the same input matrix F' (Fig. [1).
Tumor phylogenies have been used to identify mutations that drive cancer pro-
gression @7 to assess the interplay between the immune system and the clonal
architecture of a tumor | . and to identify common evolutionary patterns
in tumorigenesis and metastasis . To avoid any bias in such downstream



analyses, all possible solutions must be considered. While non-uniqueness of so-
lutions to PPM has been recognized in the field [4,/17], a rigorous analysis of its
extent and consequences on sampling by current methods has been missing.

In this paper, we study the non-uniqueness of solutions to the PPM prob-
lem. We give a upper bound on the number of solutions that can be computed
in polynomial time. Using simulations, we identify the factors that contribute to
non-uniqueness. In addition, we empirically study how, in addition to bulk se-
quencing, incorporating single-cell and long-read sequencing technologies affects
non-uniqueness. Upon finding that current Markov chain Monte Carlo methods
fail to sample uniformly from the solution space, we describe a simple rejection
sampling algorithm that is able to sample uniformly for modest numbers n of
mutations.

2 Preliminaries

In this section, we review the PERFECT PHYLOGENY MIXTURE problem, as
introduced in [3] (where it was the called the VARIANT ALLELE FREQUENCY
FACTORIZATION PROBLEM or VAFFP). As input, we are given a frequency
matrix F' = [f,..] composed of allele frequencies of n single-nucleotide variants
(SNVs) measured in m bulk DNA sequencing samples. In the following, we refer
to SNVs as mutations.

Definition 1. An m x n matriv F' = [f,.] is a frequency matrix provided
Ip.c €10,1] for all samples p € [m] and mutations c € [n].

Each frequency f, . indicates the proportion of cells in sample p that have
mutation c¢. The evolutionary history of all n mutations is described by a phylo-
genetic tree. We assume the absence of homoplasy and define a complete perfect
phylogeny tree T as follows.

Definition 2. A rooted tree T on n vertices is a complete perfect phylogeny
tree provided each edge of T is labeled with exactly one mutation from [n] and
no mutation appears more than once in T.

We call the unique mutation r € [n] that does not label any edge of a complete
perfect phylogeny tree T' the founder mutation. Equivalently, we may represent
a complete perfect phylogeny tree by an n x n binary matrix B subject to the
following constraints.

Definition 3. An n x n binary matric B = [b.q4] is an n-complete perfect
phylogeny matrix provided:

1. There exists exactly one r € [n] such that Y, b, .= 1.

2. For each d € [n] \ {r} there exists exactly one ¢ € [n] such that y."_, bge —
Sor 1bee=1, and bge > b for all e € [n].

3. be,e =1 for all c € [n].
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Fig. 2: Example PPM instance F' has three solutions. Frequency matrix
F corresponds to a simulated n = 5 instance (#9) and has m = 2 samples. The
ancestry graph G has six spanning arborescences. Among these, only trees 71,
Ty and T3 satisfy the sum condition , whereas trees Ty, T and Tg violate
leading to negative entries in Uy, Us and Ug. Tree T; is the simulated tree
of this instance. Trees T5 and T3 differ from 77 by only one edge, and thus each
have an edge recall of 3/4 = 0.75.

While the rows of a perfect phylogeny matrix B correspond to the leaves of
a perfect phylogeny tree T' (as per Definition 1), a complete perfect phylogeny
matrix B includes all vertices of T'. The final ingredient is an m X n mixture
matrix U defined as follows.

Definition 4. Anmxn matrizU = [u, | is a mixture matrix provided u, . € [0,
for all samples p € [m] and mutations ¢ € [n], and >\, u, . < 1 for all samples

p € [m].

The forward problem of obtaining a frequency matrix F' from a complete
perfect phylogeny matrix B and mixture matrix U is trivial. That is, F' = UB.
We are interested in the inverse problem, which is defined as follows.

Problem 1 (PERFECT PHYLOGENY MIXTURE (PPM)). Given a frequency ma-

trix F', find a complete perfect phylogeny matrix B and mixture matrix U such
that F =UB.

El-Kebir et al. showed that a solution to PPM corresponds to a con-
strained spanning arborescence of a directed graph G obtained from F, as



illustrated in Fig. B This directed graph G is called the ancestry graph and is
defined as follows.

Definition 5. The ancestry graph Gp obtained from frequency matrix F =
[fp.c] has n vertices V(Gr) = {1,...,n} and there is a directed edge (c,d) €
E(Gr) if and only if fp e > fp.a for all samples p € [m].

As shown in [3], the square matrix B is invertible and thus matrix U is
determined by F and B. We denote the set of children of the vertex corresponding
to a mutation ¢ € [n] \ {r} by d(c), and we define é(r) = {r(T)}.

Proposition 1 (Ref. [3]). Given frequency matric F = [f,.] and complete
perfect phylogeny matric B = [beq), matric U = [up.] where up. = fpe —
Zdeé(c) fp,a 1s the the unique matriz U such that F' = UDB.

For matrix U to be a mixture matrix, it is necessary and sufficient to enforce
non-negativity as follows.

Theorem 1 (Ref. [3]). Let F = [f, ] be a frequency matriz and Gp be the
corresponding ancestry graph. Then, complete perfect phylogeny matriz B and
associated matriz U are a solution to PPM instance F if and only if B encodes
a spanning arborescence T of G satisfying

foe> D fod Vp € [m],c € [n]. (SC)

d€doui(c)

The above equation is known as the sum condition , which requires that
any mutation with multiple children have a greater frequency than the sum of
the frequencies of its children in all samples. In this equation, Jdout(c) denotes
the set of children of vertex ¢ in rooted tree T. A spanning arborescence T of a
directed graph G is defined as a subset of edges that induce a rooted tree that
spans all vertices of Gp.

While finding a spanning arborescence in a directed graph can be done in
linear time (e.g., using a depth-first or breadth-first search), the problem of find-
ing a spanning arborescence in G adhering to is NP-hard [3{4]. Moreover,
the same input frequency matrix F' may admit more than one solution (Fig. |2).

3 Methods

3.1 Characterization of the solution space

Let F be a frequency matrix and let Gr be the corresponding ancestry graph.
By Theorem [l we have that solutions to the PPM instance F' are spanning
arborescences T' in the ancestry graph G that satisfy . In this section, we
describe additional properties that further characterize the solution space. We
start with the ancestry graph Gp.

Fact 1. If there exists a path from vertex c to vertex d then (c,d) € E(Gp).



A pair of mutations that are not connected by a path in Gg correspond to
two mutations that must occur on distinct branches in any solution. Such pairs
of incomparable mutations are characterized as follows.

Fact 2. Ancestry graph Gr does not contain the edge (c,d) nor the edge (d, ¢) if
and only if there exist two samples p, q € [m] such that fpc > fp.a and fo.c < fg.a-

We define the branching coefficient as follows.

Definition 6. The branching coeflicient v(Gg) is the fraction of unordered
pairs (c,d) of distinct mutations such that (¢,d) € E(GF) and (d,c) € E(GF).

In the single-sample case, where frequency matrix F' has m = 1 sample, we
have that v(Gp) = 0. This is because either fi . > fiq4 or fi.q > fi1,. for any

ordered pair (c,d) of distinct mutations. Since an arborescence is a rooted tree,
we have the following fact.

Fact 3. For Gg to contain a spanning arborescence there must exist a vertex in
Gr from which all other vertices are reachable.

Note that G may contain multiple source vertices from which all other
vertices are reachable. Such source vertices correspond to repeated columns in
F whose entries are greater than or equal to every other entry in the same row. In
most cases the ancestry graph G does not contain any directed cycles because
of the following property.

Fact 4. Ancestry graph Gg is a directed acyclic graph (DAG) if and only if F
has no repeated columns.

In the case where G is a DAG and contains at least one spanning arbores-
cence, we know that all spanning arborescence T of G share the same root
vertex. This root vertex r is the unique vertex of G with in-degree 0.

Fact 5. If Gr is a DAG and contains a spanning arborescence then there exists
exactly one vertex v in Gg from which all other vertices are reachable.

Fig. 2] shows the solutions to a PPM instance F' with m = 2 tumor samples
and n = 5 mutations. Since F' has no repeated columns, the corresponding
ancestry graph G is a DAG. Vertex r = 1 is the unique vertex of G g without any
incoming edges. There are three solutions to F', i.e. Ty, T5 and T3 are spanning
arborescences of G, each rooted at vertex r = 1 and each satisfying . How
do we know that F' has three solutions in total? This leads to the following
problem.

Problem 2 (#-PERFECT PHYLOGENY MIXTURE (#PPM)). Given a frequency
matrix F', count the number of pairs (U, B) such that B is a complete perfect
phylogeny matrix, U is a mixture matrix and F' = UB.



Since deciding whether a frequency matrix F' can be factorized into a com-
plete perfect phylogeny matrix B and a mixture matrix U is NP-complete [3}/4],
the corresponding counting problem is NP—hardE| Since solutions to F' corre-
spond to a subset of spanning arboscences of G g that satisfy 7 we have the
following fact.

Fact 6. The number of solutions to a PPM instance F' is at most the number
of spanning arborescences in the ancestry graph Gp.

Kirchhoff’s elegant matrix tree theorem [13] uses linear algebra to count the
number of spanning trees in a simple graph. Tutte extended this theorem to
count spanning arborescences in a directed graph G = (V, E) [27]. Briefly, the
idea is to construct the n x n Laplacian matrix L = [¢; ;] of G, where

degin(j)v le:]a
;=14 —1, ifi#jand (i,j) € E (1)
0, otherwise.

Then, the number of spanning arborescences N; rooted at vertex i is det(ﬁi),
where L; is the matrix obtained from L by removing the i-th row and column.
Thus, the total number of spanning arborescences in G is Y7, det(L;).

By Fact 4l we have that Gg is a DAG if F' has no repeated columns. In
addition, by Fact p| we know that Gr must have a unique vertex r with no
incoming edges. We have the following technical lemma.

Lemma 1. Let Gy be a DAG and let r(Gp) be its unique source vertex. Let
T be a topological ordering of the vertices of Gr. Let L' = [{] ;] be the matriz
obtained from L = [{; ;] by permuting its rows and columns according to m, i.e.
;i = La(iym(j)- Then, L' is an upper triangular matriz and (1) = r(GF).

1/7

Proof. Assume for a contradiction that L’ is not upper triangular. Thus, there
must exist vertices 4,7 € [n] such that j > i and £, # 0. By definition of

L and L', we have that ¢, = —1. Thus (7 (j), 7(4)) ‘€ E(Gr), which yields
a contradiction with 7 being a topological ordering of Gr. Hence, L’ is upper
triangular. From Fact |5 it follows that 7(1) = r(G ). O

Since the determinant of an upper triangular matrix is the product of its
diagonal entries, it follows from the previous lemma that det(L]) = H?:_ll O
Combining this fact with Tutte’s directed matrix-tree theorem, yields the fol-

lowing result.

Theorem 2. Let F be a frequency matriz without any repeated columns and let
r be the unique mutation such that f, , > fp, . for all mutations c and samples p.
Then the number of solutions to F' is at most the product of the in-degrees of all
vertices c # 71 in Gp.

! We expect the counting problem #PPM to be #P-complete, as to date no NP-
complete problem has been found whose counting version is not NP-complete |14].
To prove that #PPM is #P-complete, we need to give a parsimonious reduction
from a known #P-complete problem to #PPM.



In Fig. [2| the number of spanning arborescences in G is deg;, (2) - deg;, (3) -
deg;,(4) - deg;,(5) = 1-2-1-3 = 6. To compute the number of spanning ar-
borescences of G that satisfy , we can simply enumerate all spanning
arborescences using, for instance, the Gabow-Myers algorithm [7] and only out-
put those that satisfy . El-Kebir et al. [4] extended this algorithm such that
it maintains as an invariant while growing arborescences. Applying both
algorithms on the instance in Fig. |2| reveals that trees Ty, To and T3 comprise
all solutions to F'. We note that the enumeration algorithm in [4] has not been
shown to be an output-sensitive algorithm.

3.2 Additional constraints on the solution space

Long-read sequencing. Most cancer sequencing studies are performed using next-
generation sequencing technology, producing short reads containing between 100
and 1000 basepairs. Due to the small size of short reads, it is highly unlikely
to observe two mutations that occur on the same read (or read pair). With
(synthetic) long read sequencing technology, including 10X Genomics, Pacbio
and Oxford Nanopore, one is able to obtain reads with millions of basepairs.
Thus, it becomes possible to observe long reads that contain more than one
mutation.

As described in |1], the key insight is that a pair (¢, d) of mutations that occur
on the same read orginate from a single DNA molecule of a single cell, and thus ¢
and d must occur on the same path in the phylogenetic tree. Such mutation pairs
provide very strong constraints to the PPM problem. For example in Fig. |2 in
addition to frequency matrix F', we may be given that mutations 2 and 5 have
been observed on a single read. Thus, in 7} and T5 the pair is highlighted in green
because it is correctly placed on the same path from the root on the inferred
trees. However, the two mutations occur on distinct branches on T3, which is
therefore ruled out as a possible solution.

Single-cell sequencing. With single-cell sequencing, we are able to identify the
mutations that are present in a single tumor cell. If in addition to bulk DNA
sequencing samples, we are given single cell DNA sequencing data from the same
tumor, we can constrain the solution space to PPM considerably. In particular,
each single cell imposes that its comprising mutations must correspond to a
connected path in the phylogenetic tree. These constraints have been described
recently in [16].

For an example of these constraints, consider frequency matrix F' described
in Fig. [2 In addition to frequency matrix F', we may observe a single cell with
mutations {1,2,3,5}. T; is the only potential solution as this is the only tree
which places all four mutations on a single path, highlighted in blue. Trees T5
and T3 would be ruled out because the mutation set {1,2,3,5} does not induce
a connected path in these two trees.

We note that the constraints described above for single-cell sequencing and
long-read sequencing assume error-free data. In practice, one must incorporate



an error model and adjust the constraints accordingly. However, the underlying
principles will remain the same.

3.3 Uniform sampling of solutions

For practical PPM problem instances, the number n of mutations ranges from 10
to 1000. In particular, for solid tumors in adults we typically observe thousands
of point mutations in the genome. As such, exhaustive enumeration of solutions is
infeasible in practice. To account for non-uniqueness of solutions and to identify
common features shared among different solutions, it would be desirable to have
an algorithm that samples uniformly from the solution space. However, as the
underlying decision problem is NP-complete, the problem of sampling uniformly
from the solution space for arbitrary frequency matrices F' is NP-hard. Thus,
one must resort to heuristic approaches.

One class of such approaches employs Markov chain Monte Carlo (MCMC)
for sampling from the solution space [2,[10,/11]. Here, we describe an alterna-
tive method based on rejection sampling. This method is guaranteed to sample
uniformly from the solution space. Briefly, the idea is to generate a spanning
arborescence T from G uniformly at random and then test whether T satisfies
(SC). In the case where T satisfies , we report T as a solution and otherwise
reject T'.

For the general case where Gr may have a directed cycle, we use the cycle-
popping algorithm of Propp and Wilson [21]. This algorithm generates a uniform
spanning arborescence in time O(7(Gr)) where 7(Gp) is the expected hitting
time of G . More precisely, G p is the multi-graph obtained from Gz by including
self-loops such that the out-degrees of all its vertices are identical.

For the case where G is a DAG with a unique source vertex r, there is
a much simpler sampling algorithm. We simply assign each vertex ¢ # r to a
parent 7(c) € din(c) uniformly at random. It is easy to verify that the resulting
function 7 encodes a spanning arborescence of Gg. Thus, the running time of
this procedure is O(E(GF)). In both cases, the probability of success equals the
fraction of spanning arborescences of G that satisfy among all spanning
arborescences of G .

An implementation of the rejection sampling for the case where G is a DAG
is available on https://github.com/elkebir-group/Oncolibl

4 Results

Fig. [I] and Fig. [2] show anecdotal examples of non-uniqueness of solutions to
the PERFECT PHYLOGENY MIXTURE problem. The following questions arise:
Is non-uniqueness a widespread phenomenon in PPM instances? Which fac-
tors contribute to non-uniqueness and how does information from long-read se-
quencing and single-cell sequencing reduce non-uniqueness? Finally, are current
MCMC methods able to sample uniformly from the space of solutions?


https://github.com/elkebir-group/OncoLib

To answer these questions, we used simulated data generated by a previously
published tumor simulator [5]. For each number n € {3,5,7,9,11,13} of muta-
tions, we generated 10 complete perfect phylogeny trees T*. The simulator as-
signed each vertex v € V(1) a frequency f(v) > 0such that }-, i pe) f(v) = 1.
For each simulated complete perfect phylogeny tree T, we generated m €
{1,2,5,10} bulk samples by partitioning the vertex set V(T™*) into m disjoint
parts followed by normalizing the frequencies in each sample. This yielded a
frequency matrix F' for each combination of n and m. In total, we generated
10 -6 - 4 = 240 instances (Tables . The raw data and scripts to generate the
results are available on https://github.com/elkebir-group/PPM-NonUnigl

4.1 What contributes to non-uniqueness?

The two main factors that influence non-uniqueness are the number n of muta-
tions and the number m of samples taken from the tumor. The former contributes
to non-uniqueness while the latter reduces it. As we increased the number n of
mutations from 3 to 13, we observed that the number of solutions increased
exponentially (Fig. [3]A). On the other hand, the number m of samples had an
opposing effect: with increasing m the number of solutions decreased.

To understand why we observed these two counteracting effects, we com-
puted the number of spanning arborescences in each ancestry graph Gp. Fig.
shows that the number of spanning arborescences exhibited an exponential in-
crease with increasing number n of mutations, whereas increased number m of
samples decreased the number of spanning arborescences. The latter can be ex-
plained by studying the effect of the number m of samples on the branching
coefficient v(Gp). Fig. shows that the branching coefficient increased with
increasing m, with branching coefficient v(Gr) = 0 for all m = 1 instances F.
This finding illustrates that additional samples reveal branching of mutations.
That is, in the case where m = 1 one does not observe branching in G, whereas
as m — oo each sample will be composed of a single cell with binary frequencies
and the ancestry graph G will be a rooted tree.

Adding mutations increases the complexity of the problem, as reflected by the
number of solutions. To quantify how distinct each solution 7' is to the simulated
tree T*, we computed the edge recall of T defined as |E(T) N E(T*)|/|E(T*)]
(note that |E(T*)| = n — 1 by definition). A recall value of 1 indicates that the
inferred tree T is identical to the true tree T*. Fig. shows that the median
recall decreased with increasing number n of mutations. However, as additional
samples provide more information, the recall increased with increasing number m
of samples.

4.2 How to reduce non-uniqueness?

As discussed in Section the non-uniqueness of solutions can be reduced
through various sequencing techniques such as single-cell sequencing and long-
read sequencing. We considered the effect of both technologies on the n = 9
instances (Table [4)).
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Fig.3: Factors that contribute to non-uniqueness. (A) The number of so-
lutions increased with increasing number n of mutations, but decreased with
increasing number m of bulk samples. (B) Every solution of an PPM instance F'
is a spanning arborescence in the ancestry graph Gr. The number of spanning
arborescences in G g also increased with increasing n and decreased with increas-
ing m. (C) The decrease in the number of solutions and spanning arborescences
with increasing m is explained by the branching coefficient of v(Gr), which is
the fraction of distinct pairs of mutations that occur on distinct branches in Gg.
The fraction of such pairs increased with increasing m. (D) The median edge
recall of the inferred trees T increased with increasing m.

By taking longer reads of the genome, long-read sequencing can identify mu-
tations which coexist in a clone if they appear near one another on the genome.
If two mutations are observed together on a long read, then one mutation is
ancestral to the other. That is, on the true phylogenetic tree T there must exist
a path from the root to a leaf containing both mutations. We varied the number
of mutation pairs observed together from 0 to 5 and observed that increasing
this number reduced the size of the solution space (Fig. ) In addition, in-
corporating more simulated long-read information resulted in increased recall of
the inferred trees (Fig. [4B).

Single-cell sequencing illuminates all of the mutations present in a single
clone in a tumor. This reveals a path from the root of the true phylogenetic
tree T down to a leaf. Fig. shows the effect that single-cell sequencing has
on the size of the solution space. We found that, as we increased the number of

11
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Fig.5: Joint bulk and single-cell sequencing reduces the size of the
solution space. (A) The number of solutions decreased with increasing number
of single cells. (B) The median edge recall increased with increasing number of
single cells.

known paths (sequenced single cells) in the tree from 0 to 5, the solution space
decreased exponentially. Additionally, the inferred trees were more accurate with
more sequenced cells, as shown in Fig. 5B by the increase in median edge recall.
These effects are more pronounced when fewer samples are available.

In summary, while both single-cell and long-read sequencing reduce the ex-
tent of non-uniqueness in the solution space, single-cell sequencing achieves a
larger reduction than long-read sequencing.

4.3 How does non-uniqueness affect current methods?

To study the effect of non-uniqueness, we considered two current methods, Phy-
loWGS and Canopy , both of which use Markov chain Monte Carlo to
sample solutions from the posterior distribution. Rather than operating from
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Fig.6: PhyloWGS and Canopy do not sample uniformly from the so-
lution space. We consider an n = 7 instance (#81) with varying number
m € {1,2,5,10} of bulk samples (columns), from which we sample solutions
using different methods (rows). Each plot shows the relative frequency (y-axis)
of identical trees (z-axis) output by each method, with the simulated tree in-
dicated by ‘x’. While blue bars are correct solutions (satisfying (SC))), red bars
correspond to incorrect solutions (violating (SC))). Dashed line indicates the ex-
pected relative frequency in the case of uniformity. The title of each plot lists
the number of incorrect solutions, the number of recovered correct solutions, the
total number of correct solutions and the p-value of the chi-squared test of uni-
formity (null hypothesis is that the samples come from a uniform distribution).

frequencies F' = [fp..], these two methods take as input two integers a, . and
dp,. for each mutation ¢ and sample p. These two integers are, respectively, the
number of reads with mutation ¢ and the total number of reads. Given A = [a, (]
and D = [d, ], PhyloWGS and Canopy aim to infer a frequency matrix F and
phylogenetic tree T' with maximum data likelihood Pr(D, A | F) such that T
satisfies for matrix F. In addition, the two methods cluster mutations that
are inferred to have similar frequencies across all samples. To use these methods
in our error-free setting, where we are given matrix F = [f, ], we set the total
number of reads for each mutation ¢ in each sample p to a large number, i.e.
dp,. = 1,000,000. The number of variant reads is simply set as ap . = fp.c - dp.c-
Since both PhyloWGS and Canopy model variant reads a, . as draws from a
binomial distribution parameterized by d,, . and fp,c, the data likelihood is max-
imized when F' = F. We also discard generated solutions where mutations are
clustered. Hence, we can use these methods in the error-free case.

We ran PhyloWGS, Canopy, and our rejection sampling method (Section [3.3))
on all n = 7 instances (Table . We used the default settings for PhyloWGS
(2500 MCMC samples, burnin of 1000) and Canopy (burnin of 100 and 1 out
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Fig. 7. Although rejection sampling achieves uniformity, it becomes
impractical with increasing number n of mutations. (A) Plot shows the
ratio of the number of solutions to spanning arborescences. Observe that the
number of spanning trees increased with the number n of mutations far more
rapidly than the number of solutions. (B) With further increases in n, the ratio
rapidly decreased and the odds of randomly sampling a solution from the space
of spanning arborescences becomes infeasible.

of 5 thinning), with 20 chains per instance for PhyloWGS and 15 chains per
instance for Canopy. For each instance, we ran the rejection sampling algorithm
until it generated 10,000 solutions that satisfy (SCJ).

Fig. [f|shows one n = 7 instance (#81) with varying number m € {1,2,5,10}
of samples. For this instance, all the trees output by PhyloWGS satisfied the
sum condition. However, the set of solutions was not sampled uniformly, with
only 67 out 297 trees generated for m = 1 samples. For m = 5, this instance had
six unique solutions, with PhyloWGS only outputting trees that corresponded
to a single solution among these six solutions (Fig. E[) Similarly, Canopy failed
to sample solutions uniformly at random. In addition, Canopy failed to recover
any of the two m = 10 solutions and recovered incorrect solutions for m = 5.
The rejection sampling method recovered all solutions for each value of m. In
addition, it sampled solutions uniformly at random. Fig. Fig.[11] and Fig.
show similar patterns for the other n = 7 instances.

Given a frequency matrix F', the success probability of the rejection sampling
approach equals the fraction between the number of solutions and the number
of spanning arborescences in G, as shown empirically in Table |7l As such, this
approach does not scale with increasing n. Indeed, Fig. [7]A shows that the frac-
tion of spanning trees which also fulfill the sum condition is initially high when
the number of mutations is low. With n = 11 mutations, the fraction is approxi-
mately 1072 and rejection sampling can be considered to be feasible. However, as
the number of mutations is increased further, rejection sampling become infeasi-
ble as the fraction can drop to 1071? for n = 21 mutations (Fig. EB) Therefore,
a better sampling approach is required.
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5 Discussion

In this work, we studied the problem of non-uniqueness of solutions to the PER-
FECT PHYLOGENY MIXTURE (PPM) problem. In this problem, we are given
a frequency matrix F' that determines a directed graph G called the ancestry
graph. The task is to identify a spanning arborescence T' of G whose internal
vertices satisfy a linear inequality whose terms are entries of matrix F'. We for-
mulated the #PPM problem of counting the number of solutions to an PPM
instance. We showed that the number of solutions is at most the number of span-
ning arborescences in G, a number that can be computed in polynomial time.
For the case where G is a directed acyclic graph, we gave a simple algorithm
for counting the number of spanning arborescences. This algorithm formed the
basis of a rejection sampling scheme that samples solutions to a PPM instance
uniformly at random.

Using simulations, we showed that the number of solutions increases with
increasing number n of mutations but decreases with increasing number m of
samples. In addition, we showed that the median recall of all solutions increases
with increasing m but decreases with increasing n. We showed how constraints
from single-cell and long-read sequencing reduce the number of solutions. Fi-
nally, we showed that current MCMC methods fail to sample uniformly from
the solution space. This is problematic as it leads to biases that propagate to
downstream analyses.

There are a couple of avenues for future research. First, it remains to show
that #PPM is #P-complete. Second, while the rejection sampling algorithm
achieves uniformity, it does not scale to practical problem instance sizes. Further
research is needed to develop sampling algorithms that achieve near-uniformity
and have reasonable running time for practical problem instances. Third, in
terms of practical applications, the problem of sampling solutions uniformly at
random in the case of noisy frequencies must be studied. Fourth, just as single-cell
sequencing and long-read sequencing impose constraints on the solution space
of PPM, it will be worthwhile to include additional prior knowledge to further
constrain the solution space. Finally, the PPM problem and the simulations
in this paper assumed error-free data. Further research is needed to study the
effect of sequencing, sampling and mapping errors. It is to be expected that
the problem of non-uniqueness is further exacerbated with additional sources
uncertainty.
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A

Supplementary Results

We have the following the figures and tables in the supplement.

Fig. |8|illustrates how an ancestry graph is derived from a frequency matrix.
Fig. [0] shows the six solutions of instance #81 with n = 7 mutations and
m = 5 samples.

Fig. illustrates the distribution of samples drawn by PhyloWGS for all
n = 7 instances.

Fig. |L1]illustrates the distribution of samples drawn by Canopy for all n =7
instances.

Fig. illustrates the distribution of samples drawn by rejection sampling
for all n = 7 instances.

Table [I] lists the parameters and results of all instances where n = 3.

Table [2] lists the parameters and results of all instances where n = 5.

Table [3]lists the parameters and results of all instances where n = 7.

Table [ lists the parameters and results of all instances where n = 9.

Table [5] lists the parameters and results of all instances where n = 11.
Table [0] lists the parameters and results of all instances where n = 13.
Table [7] lists the parameters and results of rejection sampling over all n =7
instances.
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l # [samples m|solutions|spanning arborescences| ratio [median recall

1 2 2 1.000000 0.750

9 2 1 2 0.500000 1.000
5 1 2 0.500000 1.000

10 1 2 0.500000 1.000

1 2 2 1.000000 0.750

8 2 2 2 1.000000 0.750
5 1 1 1.000000 1.000

10 1 1 1.000000 1.000

1 2 2 1.000000 0.750

19 2 2 2 1.000000 0.750
5 1 1 1.000000 1.000

10 1 1 1.000000 1.000

1 2 2 1.000000 0.750

15 2 2 2 1.000000 0.750
5 1 1 1.000000 1.000

10 1 1 1.000000 1.000

1 2 2 1.000000 0.750

30 2 2 2 1.000000 0.750
5 1 1 1.000000 1.000

10 1 1 1.000000 1.000

1 2 2 1.000000 0.750

39 2 2 2 1.000000 0.750
5 1 1 1.000000 1.000

10 1 1 1.000000 1.000

1 2 2 1.000000 0.750

2 2 2 1.000000 0.750

o0 5 1 1 1.000000 1.000
10 1 1 1.000000 1.000

1 2 2 1.000000 0.750

104 2 2 2 1.000000 0.750
5 1 1 1.000000 1.000

10 1 1 1.000000 1.000

1 2 2 1.000000 0.750

119 2 2 2 1.000000 0.750
5 1 1 1.000000 1.000

10 1 1 1.000000 1.000

1 2 2 1.000000 0.750

129 2 2 2 1.000000 0.750
5 1 1 1.000000 1.000

10 1 1 1.000000 1.000

Table 1: Result for n = 3 instances. From left to right, we list the instance
identifier, the number m of samples, the number of solutions, the number of
spanning arborescences in the ancestry graph of the instance, the ratio between
the solutions and spanning arborescences and the median edge recall.
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l#[samples m|solutions|spanning arborescences| ratio |median recall

1 15 24 0.625000 0.500
3 2 6 12 0.500000 0.750
5 4 6 0.666667 0.625
10 1 2 0.500000 1.000
1 16 24 0.666667 0.500
5 2 5 6 0.833333 0.750
5 5 6 0.833333 0.750
10 2 2 1.000000 0.875
1 21 24 0.875000 0.500
9 2 3 6 0.500000 0.750
5 9 24 0.375000 0.500
10 2 6 0.333333 0.875
1 21 24 0.875000 0.500
18 2 5 6 0.833333 0.750
5 6 8 0.750000 0.750
10 2 3 0.666667 0.875
1 24 24 1.000000 0.500
37 2 6 6 1.000000 0.750
5 6 6 1.000000 0.750
10 2 2 1.000000 0.875
1 12 24 0.500000 0.625
45 2 3 16 0.187500 0.750
5 5 24 0.208333 0.750
10 2 18 0.111111 0.875
1 18 24 0.750000 0.500
62 2 5 6 0.833333 0.750
5 6 6 1.000000 0.750
10 2 2 1.000000 0.875
1 11 24 0.458333 0.500
66 2 4 12 0.333333 0.750
5 2 6 0.333333 0.875
10 2 6 0.333333 0.875
1 22 24 0.916667 0.500
69 2 4 6 0.666667 0.625
5 7 8 0.875000 0.750
10 2 3 0.666667 0.875
1 11 24 0.458333 0.750
71 2 4 18 0.222222 0.750
5 2 24 0.083333 0.875
10 1 18 0.055556 1.000

Table 2: Result for n = 5 instances. From left to right, we list the instance
identifier, the number m of samples, the number of solutions, the number of
spanning arborescences in the ancestry graph of the instance, the ratio between
the solutions and spanning arborescences and the median edge recall.
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l # [samples m|solutions|spanning arborescences| ratio |median recall
1 432 720 0.600000 0.500
7 2 94 120 0.783333 0.500
5 24 60 0.400000 0.667
10 6 24 0.250000 0.833
1 28 720 0.038889 0.667
10 2 17 720 0.023611 0.667
5 4 144 0.027778 0.833
10 3 144 0.020833 0.833
1 315 720 0.437500 0.333
19 2 43 120 0.358333 0.500
5 12 80 0.150000 0.750
10 6 48 0.125000 0.833
1 79 720 0.109722 0.500
23 2 18 360 0.050000 0.667
5 10 180 0.055556 0.750
10 3 90 0.033333 0.833
1 293 720 0.406944 0.500
30 2 70 120 0.583333 0.667
5 22 24 0.916667 0.667
10 6 6 1.000000 0.833
1 618 720 0.858333 0.333
43 2 54 720 0.075000 0.500
5 21 360 0.058333 0.667
10 6 216 0.027778 0.833
1 398 720 0.552778 0.333
49 2 37 270 0.137037 0.500
5 2 24 0.083333 0.917
10 1 24 0.041667 1.000
1 328 720 0.455556 0.500
61 2 106 240 0.441667 0.500
5 19 30 0.633333 0.667
10 3 8 0.375000 0.833
1 101 720 0.140278 0.500
66 2 14 240 0.058333 0.667
5 6 120 0.050000 0.833
10 2 48 0.041667 0.917
1 297 720 0.412500 0.500
81 2 50 240 0.208333 0.667
5 6 48 0.125000 0.833
10 2 24 0.083333 0.917

Table 3: Result for n = 7 instances. From left to right, we list the instance
identifier, the number m of samples, the number of solutions, the number of
spanning arborescences in the ancestry graph of the instance, the ratio between

the solutions and spanning arborescences and the median edge recall.
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l#[samples m|solutions|spanning arborescences| ratio |median recall
1 1472 40320 0.036508 0.500
0 2 36 1920 0.018750 0.750
5 7 360 0.019444 0.875
10 5 360 0.013889 0.875
1 10445 40320 0.259053 0.375
5 2 2200 5040 0.436508 0.500
5 4 16 0.250000 0.875
10 3 12 0.250000 0.875
1 6180 40320 0.153274 0.500
18 2 1450 5040 0.287698 0.500
5 13 60 0.216667 0.750
10 9 48 0.187500 0.750
1 4776 40320 0.118452 0.375
94 2 522 10080 0.051786 0.500
5 36 1440 0.025000 0.625
10 12 960 0.012500 0.750
1 3755 40320 0.093130 0.500
97 2 382 7560 0.050529 0.625
5 16 864 0.018519 0.750
10 6 360 0.016667 0.875
1 8183 40320 0.202951 0.375
31 2 600 13440 0.044643 0.500
5 19 288 0.065972 0.750
10 6 180 0.033333 0.875
1 14760 40320 0.366071 0.375
39 2 1196 3360 0.355952 0.500
5 56 720 0.077778 0.625
10 18 120 0.150000 0.688
1 9436 40320 0.234028 0.375
48 2 1906 10080 0.189087 0.375
5 36 240 0.150000 0.625
10 9 48 0.187500 0.750
1 10122 40320 0.251042 0.375
56 2 1234 2016 0.612103 0.500
5 66 120 0.550000 0.750
10 6 16 0.375000 0.875
1 22151 40320 0.549380 0.375
70 2 3364 10080 0.333730 0.375
5 13 80 0.162500 0.750
10 7 48 0.145833 0.875

Table 4: Result for n = 9 instances. From left to right, we list the instance
identifier, the number m of samples, the number of solutions, the number of
spanning arborescences in the ancestry graph of the instance, the ratio between

the solutions and spanning arborescences and the median edge recall.
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l # [samples m|solutions|spanning arborescences[ ratio [median recall

1 74138 3628800 0.020430 0.400
94 2 11301 1451520 0.007786 0.400
5 4 2160 0.001852 0.900
10 2 1296 0.001543 0.950
1 211022 3628800 0.058152 0.400
97 2 9456 544320 0.017372 0.500
5 46 12096 0.003803 0.700
10 3 2592 0.001157 0.900
1 13338 3628800 0.003676 0.500
35 2 3350 3628800 0.000923 0.600
5 10 108000 0.000093 0.850
10 3 72000 0.000042 0.900
1 224451 3628800 0.061853 0.400
69 2 3898 120960 0.032226 0.600
5 15 3840 0.003906 0.800
10 5 1920 0.002604 0.900
1 129706 3628800 0.035743 0.400
83 2 936 414720 0.002257 0.600
5 104 40320 0.002579 0.600
10 4 4320 0.000926 0.900
1 4249 3628800 0.001171 0.500
89 2 547 1814400 0.000301 0.700
5 4 15120 0.000265 0.900
10 3 12960 0.000231 0.900
1 546559 3628800 0.150617 0.400
109 2 78547 362880 0.216454 0.500
5 48 480 0.100000 0.800
10 7 64 0.109375 0.900
1 288866 3628800 0.079604 0.300
115 2 6428 241920 0.026571 0.400
5 6 192 0.031250 0.900
10 6 512 0.011719 0.900
1 522216 3628800 0.143909 0.400
129 2 103994 725760 0.143290 0.400
5 60 640 0.093750 0.750
10 12 96 0.125000 0.800
1 729024 3628800 0.200899 0.400
139 2 84747 725760 0.116770 0.400
5 10 432 0.023148 0.850
10 8 216 0.037037 0.850

Table 5: Result for n = 11 instances. From left to right, we list the instance
identifier, the number m of samples, the number of solutions, the number of
spanning arborescences in the ancestry graph of the instance, the ratio between
the solutions and spanning arborescences and the median edge recall.
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l # [samples m|solutions|spanning arborescences| ratio |median recalll
1 9863339 479001600 0.020591 0.250
3 2 409393 47900160 0.008547 0.417
5 252 194400 0.001296 0.667
10 4 11520 0.000347 0.917
1 1118667 479001600 0.002335 0.250
19 2 14892 19958400 0.000746 0.583
5 16 138240 0.000116 0.833
10 6 40320 0.000149 0.917
1 867056 479001600 0.001810 0.417
15 2 26834 114048000 0.000235 0.500
5 42 2419200 0.000017 0.750
10 4 829440 0.000005 0.917
1 7318619 479001600 0.015279 0.333
19 2 120419 65318400 0.001844 0.500
5 60 97200 0.000617 0.750
10 6 38880 0.000154 0.917
1 78781 479001600 0.000164 0.500
95 2 2488 119750400 0.000021 0.667
5 44 1244160 0.000035 0.750
10 3 345600 0.000009 0.917
1 9300931 479001600 0.019417 0.250
40 2 436744 47900160 0.009118 0.333
5 352 40320 0.008730 0.667
10 12 4800 0.002500 0.833
1 33809749 479001600 0.070584 NA
43 2 575588 29030400 0.019827 0.333
5 152 69120 0.002199 0.667
10 7 5760 0.001215 0.917
1 28053 479001600 0.000059 0.583
45 2 1592 108864000 0.000015 0.667
5 20 2646000 0.000008 0.833
10 2 1620000 0.000001 0.958
1 23086684 479001600 0.048198 NA
56 2 2235187 79833600 0.027998 0.333
5 280 57600 0.004861 0.667
10 12 3840 0.003125 0.833
1 27236653 479001600 0.056861 NA
84 2 8623319 479001600 0.018003 0.333
5 156 3600 0.043333 0.667
10 12 768 0.015625 0.833

Table 6: Result for n = 13 instances. From left to right, we list the instance
identifier, the number m of samples, the number of solutions, the number of
spanning arborescences in the ancestry graph of the instance, the ratio between

the solutions and spanning arborescences and the median edge recall.
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l#[samples m|solutions|spanning arborescences|solution ratio“ trials [success ratio

1 432 720 0.600 16585 0.603
7 2 94 120 0.783 12753 0.784
5 24 60 0.400 24821 0.403
10 6 24 0.250 40859 0.245
1 28 720 0.039 256090 0.039
10 2 17 720 0.024 419637 0.024
5 4 144 0.028 358360 0.028
10 3 144 0.021 481517 0.021
1 315 720 0.438 23109 0.433
19 2 43 120 0.358 28009 0.357
5 12 80 0.150 67803 0.147
10 6 48 0.125 78530 0.127
1 79 720 0.110 90828 0.110
23 2 18 360 0.050 197369 0.051
5 10 180 0.056 180518 0.055
10 3 90 0.033 300223 0.033
1 293 720 0.407 24665 0.405
30 2 70 120 0.583 17204 0.581
5 22 24 0.917 10942 0.914
10 6 6 1.000 10000 1.000
1 618 720 0.858 11606 0.862
43 2 54 720 0.075 132441 0.076
5 21 360 0.058 169685 0.059
10 6 216 0.028 354898 0.028
1 398 720 0.553 18115 0.552
49 2 37 270 0.137 73073 0.137
5 2 24 0.083 120731 0.083
10 1 24 0.042 239816 0.042
1 328 720 0.456 21939 0.456
61 2 106 240 0.442 22626 0.442
5 19 30 0.633 15896 0.629
10 3 8 0.375 26864 0.372
1 101 720 0.140 71260 0.140
66 2 14 240 0.058 171753 0.058
5 6 120 0.050 199703 0.050
10 2 48 0.042 239576 0.042
1 297 720 0.412 24528 0.408
31 2 50 240 0.208 49137 0.204
5 6 48 0.125 79423 0.126
10 2 24 0.083 120821 0.083

Table 7: Rejection sampling results for n = 7 instances. From left to
right, we list the instance identifier, the number m of samples, the number of
solutions (satisfying (SC])), the number of spanning arborescences in the ancestry
graph of the instance, the ratio between the solutions and spanning trees, the
total number of samples (trials) used by the rejection sampling algorithm, the
fraction of accepted samples (successful trials). Observe that ‘success ratio’ ~
‘solution ratio’.
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Frequency Matrix F

Fig. 8: Example ancestry graph. Frequency matrix F' corresponds to a simu-
lated n = 5 instance (#9) and has m = 2 samples. The corresponding ancestry
graph G illustrates the potential parental relationships.
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(D) (E) (F)

Fig.9: Instance #81 with n = 7 mutations and m = 5 samples has six
solutions. Solution (A) is the true solution. All 7500 samples generated by
PhyloWGS correspond to (F). Canopy generated a total of 387 samples corre-
sponding to three different trees. Two out of the three trees were incorrect (307
samples), the remaining 80 samples correspond to (A). Our rejection sampling
procedure generated 10000 samples corresponding to each of the six trees in
roughly equal proportions.
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Fig. 10: PhyloWGS results. Each plot shows the relative frequency of correct
solutions (satisfying ) output by PhyloWGS (blue bars), with the simulated
solution indicated by ‘x’. Red bars correspond to incorrect solutions (violating
(SC)). Dashed line indicates the expected relative frequency in the case of uni-
formity. The title of each plot lists the number of incorrect solutions, the number
of recovered correct solutions, the total number of correct solutions and the p-
value of the chi-squared test of uniformity. PhyloWGS did not generate any trees
without clustered mutations for the instances marked by ‘n/a’.
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Fig.11: Canopy results. Each plot shows the relative frequency of correct
solutions (satisfying ) output by Canopy (blue bars), with the simulated
solution indicated by ‘x’. Red bars correspond to incorrect solutions (violating
(SC)). Dashed line indicates the expected relative frequency in the case of uni-
formity. The title of each plot lists the number of incorrect solutions, the number
of recovered correct solutions, the total number of correct solutions and the p-
value of the chi-squared test of uniformity. Canopy did not generate any trees
without clustered mutations for the instances marked by ‘n/a’.
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Fig. 12: Rejection sampling results. Each plot shows the relative frequency
of correct solutions (satisfying ) output by our rejection sampling procedure
(blue bars), with the simulated solution indicated by ‘x’. Red bars correspond to
incorrect solutions (violating ) Dashed line indicates the expected relative
frequency in the case of uniformity. The title of each plot lists the number of
recovered correct solutions, the total number of correct solutions and the p-value
of the chi-squared test of uniformity.
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