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Abstract

Motivation: While each cancer is the result of an isolated evolutionary process, there are repeated
patterns in tumorigenesis defined by recurrent driver mutations and their temporal ordering. Such repeated
evolutionary trajectories hold the potential to improve stratification of cancer patients into subtypes with
distinct survival and therapy response profiles. However, current cancer phylogeny methods infer large
solution spaces of plausible evolutionary histories from the same sequencing data, obfuscating repeated
evolutionary patterns.
Results: To simultaneously resolve ambiguities in sequencing data and identify cancer subtypes, we
propose to leverage common patterns of evolution found in patient cohorts. We first formulate the Multiple
Choice Consensus Tree problem, which seeks to select a tumor tree for each patient and assign patients
into clusters in such a way that maximizes consistency within each cluster of patient trees. We prove
that this problem is NP-hard and develop a heuristic algorithm, RECAP, to solve this problem in practice.
Finally, on simulated data, we show RECAP outperforms existing methods that do not account for patient
subtypes. We then use RECAP to resolve ambiguities in patient trees and find repeated evolutionary
trajectories in lung and breast cancer cohorts.
Availability: https://github.com/elkebir-group/RECAP
Contact: melkebir@illinois.edu
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
The landmark paper by Nowell (1976) posits that cancer results
from an evolutionary process that leads to multiple genetically-distinct
subpopulations of cells known as clones. While each cancer results from
a different instantiation of this evolutionary process, the complexity of
all cancers can be reduced to a small number of principles, so called
hallmarks of cancer (Hanahan and Weinberg, 2000, 2011). Nevertheless,
there is an exponential number of combinations of somatic mutations in
which these traits can be acquired. To reason about cancer evolution,
researchers represent the evolutionary histories of individual tumors using

phylogenies. Specifically, the increasing availability of tumor sequencing
data has led to the use of phylogenies to identify mutations that drive
cancer progression (McGranahan et al., 2015; Jamal-Hanjani et al., 2017),
which in turn have been used to identify repeated evolutionary trajectories
in tumorigenesis and metastasis (Turajlic et al., 2018a,b; Caravagna
et al., 2018; Khakabimamaghani et al., 2019). The grouping of cancer
patients into subtypes with similar patterns of evolution holds the potential
to enhance current pathology-based subtypes, thereby improving our
understanding of tumorigenesis and leading to better stratification of
tumors with respect to survival and response to therapy.

The two types of current sequencing technologies, bulk and single-cell
DNA sequencing, each present unique challenges to the task of identifying
repeated evolutionary trajectories. With bulk DNA sequencing, which
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forms the majority of currently available data, the input is a mixed sample,
composed of sequences from cells with distinct genomes (Pradhan and
El-Kebir, 2018; Qi et al., 2019). With single-cell DNA sequencing, the
input has elevated rates of false positives, false negatives and missing
data (Navin, 2014). Hence, in neither case does one directly observe the
leaves of the phylogeny, preventing the adoption of species phylogenetics
techniques. Specialized tumor phylogeny inference methods must be
used to analyze these data (reviewed in Schwartz and Schäffer (2017)).
Such methods infer many plausible trees for the same input, leading to
large solution spaces of phylogenies with different mutation orderings.
Importantly, alternative phylogenies at the individual patient level
obfuscate repeated patterns of cancer evolution at the patient cohort level.

Two recent methods, REVOLVER (Caravagna et al., 2018) and
HINTRA (Khakabimamaghani et al., 2019), propose to select one
phylogeny for each patient so that the resulting trees are maximally similar,
enabling the identification of repeated evolutionary trajectories. There
are several limitations. First, since HINTRA (Khakabimamaghani et al.,
2019) exhaustively enumerates all possible (directed) two-state perfect
phylogenies, which grows as nn−1 where n is the number of mutations, it
does not scale beyond a small numbern = 5 of mutations. Second, neither
HINTRA (Khakabimamaghani et al., 2019) nor REVOLVER (Caravagna
et al., 2018) directly account for the presence of distinct subtypes of
patients with distinct evolutionary patterns. Specifically, neither method
uses a mixture model to represent the selected patient trees, assuming all
selected trees to originate from a single distribution. REVOLVER tries to
recover a patient clustering only after the fact, i.e. hierarchical clustering
is performed only after inference of the selected trees and their single
generating distribution. This is a serious limitation of both methods as
the presence of distinct subtypes with distinct evolutionary trajectories is
a documented phenomenon in cancer (Curtis et al., 2012; Turajlic et al.,
2018a,b).

Here, we view the problem of identifying repeated patterns of
tumor evolution as a consensus tree problem, where the consensus tree
summarizes different patient phylogenies. Leveraging our previous work
on the Multiple Consensus Tree (MCT) problem (Aguse et al., 2019),
we formulate the Multiple Choice Consensus Tree (MCCT) optimization
problem to simultaneously (i) select a phylogeny for each patient in a
cancer cohort, (ii) cluster the patients to account for subtype heterogeneity,
and (iii) identify a representative consensus tree for each patient cluster
(Fig. 1). We prove the problem to be NP-hard. We introduce Revealing
Evolutionary Consensus Across Patients (RECAP), a coordinate ascent
algorithm as a heuristic for solving this problem. We include a model
selection criterion for identifying the number k of subtypes needed to
explain a dataset. On simulated data, we show that RECAP outperforms
existing methods that do not support diverse evolutionary trajectories. We
demonstrate the use of RECAP on real data, identifying well-supported
evolutionary trajectories in a non-small cell lung cancer cohort and a breast
cancer cohort.

2 Preliminaries
We represent the evolutionary history of a tumor by a rooted tree T whose
root vertex is denoted by r(T ), vertex set byV (T ) and directed edge set by
E(T ). Each vertex v of T corresponds to a clone in the tumor, composed
of the mutations that label the edges on the unique path from r(T ) to v. In
particular, the root r(T ) corresponds to the normal/germline clone without
any mutations. In line with the majority of current phylogenetic analyses
in cancer genomics, this work adheres to the infinite sites assumption,
i.e. each mutation is gained exactly once and is never subsequently lost.
Thus, each mutation is present on exactly one edge (u, v) of T and we
may represent each non-root vertex v 6= r(T ) by the mutations µ(v) =
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Fig. 1: RECAP solves the Multiple Choice Consensus Tree
problem. Given a family {T1, . . . , Tn} of sets of patient trees, we
simultaneously cluster n patients into k subtypes of evolutionary
trajectories {R1, . . . , Rk} and select a phylogeny for each patient.
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Fig. 2: Normalized parent-child distance accounts for varying
mutation sets and tree sizes. Here, Σ consists of six mutations (colored
circles). The normalized parent-child distance dN (T1, T2) = 0.5 of trees
T1 and T2 is the sum of the sizes of the symmetric differences of their
edge sets (light gray) and vertex sets (light blue) divided by 2|Σ|.

µ(u, v) introduced on its unique incoming edge (u, v). The root vertex
r(T ) may be represented by the empty set µ(r(T )) = ∅. Throughout
the manuscript, we will refer to rooted trees adhering to the infinite sites
assumption simply as trees.

Tree distances. By comparing trees of different patients, we may identify
repeated patterns of tumor evolution. To do this in a principled way,
we require a distance function d(T, T ′) that quantifies the degree of
differences between two trees T and T ′. Many distance measures
have been proposed for cancer phylogenies under the infinite sites
assumption (Govek et al., 2018; Karpov et al., 2019; Ross and Markowetz,
2016; DiNardo et al., 2019), including the parent-child distance, defined
as follows.

Definition 1 ((Govek et al., 2018)). The parent-child distance d(T, T ′)

of two trees T and T ′ is the size of the symmetric difference between the
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two edge sets E(T ) and E(T ′), i.e.

d(T, T ′) = |E(T )4 E(T ′)|. (1)

To control for trees of varying sizes and mutation sets, we augment the
parent-child distance to account for missing mutations in either tree and
include a normalization factor (Fig. 2). This is formalized as follows.

Definition 2. The normalized parent-child distance dN (T, T ′) of two
trees T and T ′ is the parent-child distance divided by twice the size of the
vertex set Σ = |V (T ) ∪ V (T ′)|, i.e.

dN (T, T ′) =
|E(T )4 E(T ′)|+ |V (T )4 V (T ′)|

2Σ
. (2)

Consensus tree problems. The problem of identifying repeated patterns of
tumor evolution may be viewed as a consensus tree problem. The following
Single Consensus Tree (SCT) problem was posed and solved in a recent
paper for trees with identical mutation sets using the parent-child distance.

Problem 1 (Single Consensus Tree (SCT) (Govek et al., 2018)). Given
a set T = {T1, · · · , Tn} of trees on the same vertex set Σ, find a
consensus treeRwith vertex set Σ such that the total parent-child distance∑n
i=1 d(Ti, R) is minimum.

Representing evolutionary patterns common to a large number of
patients by a single consensus tree is often too restrictive, as multiple
subtypes with distinct evolutionary patterns and phenotypes exist even
among cancers with the same primary location (Curtis et al., 2012). This
limitation may be overcome by a natural extension of the SCT problem,
where rather than finding a single consensus tree one simultaneously
clusters patient trees and identifies a representative consensus tree for each
cluster. In previous work, we formalized this as the Multiple Consensus
Tree (MCT) problem (Aguse et al., 2019).

Problem 2 (Multiple Consensus Tree (MCT) (Aguse et al., 2019)). Given
a set T = {T1, · · · , Tn} of trees with the same vertex set Σ and integer
k > 0, find (i) a clustering σ : [n]→ [k] of input trees into k clusters and
(ii) a consensus tree Rj with vertex set Σ for each cluster j ∈ [k] such
that the total parent-child distance

∑n
i=1 d(Ti, Rσ(i)) is minimum.

There are three challenges that prevent the adoption of methods for
the MCT problem to identify repeated evolutionary patterns. First, the
application of phylogenetic techniques specialized for cancer sequencing
data results in a large solution spaceT of plausible trees for each individual
patient. Second, inference methods typically label vertices by mutation
clusters rather than a single mutation. Such mutation clusters represent
another type of ambiguity in the patient trees where the linear ordering of
mutations in the vertex is unknown. We say that a treeT ′ is an expansion of
a treeT if all mutation clusters ofT have been expanded into ordered paths
(see Fig. 4). Third, due to inter-tumor heterogeneity, the set of mutations
across patients will vary, violating the constraint that patient trees are on
the same set Σ of mutations.

Leveraging information across patients, we wish to resolve ambiguities
in our input data and detect subtypes of evolutionary patterns by
simultaneously (i) identifying a single expanded tree among the solution
space of trees for each patient, (ii) assigning patients to clusters and
(iii) inferring a consensus tree summarizing the identified expanded trees
for each cluster of patients. We formalize this as the Multiple Choice
Consensus Tree problem (Fig. 1).

Problem 3. (Multiple Choice Consensus Tree (MCCT)) Given a family
T = {T1, . . . , Tn} of sets of patient trees composed of subsets of
mutations Σ and integer k > 0, find (i) a single tree Si ∈ Ti for each
patient i ∈ [n], (ii) an expanded tree S′i of each selected tree Si, (iii) a

r

….
c1 c2 cn

Remaining 
variables and 

their negations 

yi,1 yi,2 ¬yi,3

¬yi,1 ¬yi,2 yi,3

Fig. 3: An example of the gadget used in the NP-hardness proof for
the MCCT problem. This is just one the seven trees in collection Ti
constructed from clause ci = yi,1 ∨ yi,2 ∨ yi,3 in our 3-SAT formula.
This tree corresponds to the case where ci is satisfied by both the first and
second literal, but not the third.

clustering σ : [n]→ [k] of patients into k (non-empty) clusters and (iv) a
consensus tree Rj for each cluster j ∈ [k] such that the total normalized
parent-child distance

∑n
i=1 dN (S′i, Rσ(i)) is minimum.

The MCCT problem generalizes both the SCT and MCT problems
when there are no mutation clusters and all patients have the same set of
mutations. In particular, when there is only a single tree for each patient,
the MCCT problem reduces to the MCT problem. For the case where, in
addition to the previous, we seek only a single cluster (k = 1), the MCCT
problem further reduces to the SCT problem.

3 Complexity
We start by noting that since the MCCT problem is a generalization for
the MCT problem, any hardness result for MCT carries over to MCCT.
Previously, Aguse et al. (2019) showed that MCT is NP-hard for the case
where k = O(n), which thus means that MCCT is NP-hard for the same
case. Here, we prove a stronger result, showing that MCCT is NP-hard even
when k = 1. Specifically, this section sketches a proof of NP-hardness for
the MCCT problem by reducing from the canonical NP-hard problem of
3-SATISFIABILITY (3-SAT) (Karp, 1972). The full proof can be found
in Appendix A.

Theorem 1. MCCT is NP-hard even in the restricted case where (i) we
seek a single consensus tree (k = 1), (ii) trees in T have the same vertex
set Σ, and (iii) there are no mutation clusters.

Recall that in 3-SAT, we are given a Boolean formulaφ = ∧ni=1(yi,1∨
yi,2 ∨ yi,3) in 3-conjunctive normal form with m variables denoted
by {x1, · · · , xm} and n clauses denoted by {c1, · · · , cn}. We define
γ(yi,j) = 1 if literal yi,j is of the form x, and γ(yi,j) = 0 if literal
yi,j is of the form ¬x, where x is one of the variables. A truth assignment
θ : [m] → {0, 1} satisfies clause ci = (yi,1 ∨ yi,2 ∨ yi,3) if there
exists a j ∈ {1, 2, 3} such that θ(x) = γ(yi,j), where x is the variable
corresponding to literal yi,j . 3-SAT seeks to determine if there exists a
truth assignment θ∗ satisfying all clauses of φ.

Given an instanceφ of 3-SAT, we reduce it to an MCCT instance T (φ)

as follows (see Fig 3). To simplify the reduction, we assume that (i) φ has
literals from three distinct variables within every clause, (ii) every variable
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and its negation appear in at least two clauses each, and (iii) a variable and
its negation never appear in the same clause. These conditions are without
loss of generality, as every φ that does not satisfy these conditions can be
rewritten as an equisatisfiable formula φ′ in polynomial time that adheres
to the three conditions. We construct a family T (φ) = {T1, . . . , Tn} of
sets of trees over the shared vertex/mutation set

Σ = {r, x1, · · · , xm,¬x1, · · · ,¬xm, c1, · · · , cn}.

Note that this shared vertex set contains a vertex for each positive and
negative literal in φ, a vertex for every clause in φ, and an extra vertex r
(i.e. |Σ| = 2m+ n+ 1).

For each clause ci = (yi,1 ∨ yi,2 ∨ yi,3) in φ, the family T (φ)

contains one set Ti comprised of seven trees. These trees correspond
to the seven possible assignments of truth values to variables in ci
such that the clause is satisfied. Per our assumption that φ has clauses
composed of distinct variables, there exist exactly seven distinct truth
assignments that satisfy clause ci. Consider one such assignmentφ(x1) =

γ(yi,1), φ(x2) = γ(yi,2), φ(x3) 6= γ(yi,3), where x1, x2, x3 are
the variables corresponding to literals yi,1, yi,2, yi,3, respectively. The
tree representing this assignment in Ti is constructed as follows: (i) the
tree has r as the root vertex; (ii) the root r has vertices c1, · · · , cn as
children; (iii) the root also has children corresponding to each literal
based on the assignment, i.e. {(r, yi,1), (r, yi,2), (r,¬yi,3)} for this
example; (iv) each of these literals then has its negation as a child, i.e.
{(yi,1,¬yi,1), (yi,2,¬yi,2), (¬yi,3, yi,3)}; (v) the remaining vertices
(corresponding to variables and negations not in ci) are added as children
of the vertex labeled ci. Note that r will always have 3 + n children
corresponding to the three literals and n clauses. Fig. 3 shows an example.

This reduction can be performed inO(|T (φ)|·|Σ|) = O(n(2m+n+

1)) = O(n2 +nm) time and is therefore polynomial. After constructing
T (φ), we can use an algorithm for MCCT to select one of the 7 trees
from each set in T (φ) in order to minimize the parent-child distance to
a single consensus tree (i.e. k = 1). Note that minimizing the parent-
child distance is equivalent to minimizing the normalized parent-child
distance since all input trees have identical vertex sets and the same
number of edges (i.e. the vertex symmetric difference in the numerator
is zero, and the normalizing denominator is a constant scaling factor).
Appendix B proves that φ has a satisfying assignment if and only if the
optimal solution to this corresponding MCCT instance has a parent-child
score of 2n(2m−6). Moreover, we may use the consensus tree to recover
a satisfying assignment for φ.

4 Methods
In this section, we introduce Revealing Evolutionary Consensus Across
Patients (RECAP), an algorithm to heuristically solve the Multiple Choice
Consensus Tree (MCCT) problem. We first introduce a simplified version
of the algorithm where all input trees from all patients are on the same
mutation set and there are no mutation clusters (Section 4.1). We then
subsequently relax these requirements and show how we augment the
algorithm to handle these two conditions (Sections 4.2 and 4.3). Section 4.4
describes a model selection procedure for choosing the number k of
clusters.

4.1 Coordinate ascent heuristic for simple case

The MCCT problem models (i) the selection of one tree Si ∈ Ti for each
patient i, (ii) the surjective clustering functionσ : [n]→ [k] of the selected
trees to one of k clusters, and (iii) the construction of multiple consensus
trees {R1, . . . , Rk} by minimizing the sum of normalized parent-child
distances between consensus trees and the selected trees. To begin, we

Algorithm 1: Coordinate Ascent Heuristic for Simple Case

Input: A collection T = {T1, · · · , Tn} of patients’ tree sets and
number k > 0 of clusters

Output: Selection of trees {S1, · · · , Sn}, consensus trees
{R1, · · · , Rk}, and clustering σ with smallest criterion
score found.

1 {S1, · · · , Sn} ← random tree selection for each patient i from Ti
2 σ← random surjective cluster mapping from [n]→ [k]

3 {R1, · · · , Rk} ← Compute initial consensus tree for each cluster
j by running SCT algorithm on the set {Si | σ(i) = j}.

4 ∆←∞, L←
∑n
i=1 d(Si, Rσ(i))

5 while ∆ > 0 do
6 for j ← 1 to k do
7 Rj ← Update consensus tree for cluster j by running SCT

algorithm on the set {Si|σ(i) = j}.
8 for i← 1 to n do
9 Si, σ(i)← Update selected tree and cluster for patient i by

directly computing argminT∈Ti,j∈[k] d(T,Rj)

10 ∆← L−
∑n
i=1 d(Si, Rσ(i))

11 L←
∑n
i=1 d(Si, Rσ(i))

12 return ({S1, · · · , Sn}, {R1, · · · , Rk}, σ)

assume that all trees from all patients have the same set of mutations and
no mutation clusters.

The pseudocode for our algorithm is given in Algorithm 1. We begin
by initializing a random selection of one tree for each patient. We also
initialize a random assignment of patients to one of k clusters, ensuring
that there is at least one patient per cluster. We then iterate between two
steps: (i) finding an optimal consensus tree for the current selected trees
assigned to each cluster, and (ii) selecting new trees for each patient and
reassigning patients to clusters given the current consensus trees. We iterate
between these two steps until convergence.

To perform step (i), we note that we can reduce this step into k

independent instances of SCT, one for each cluster. The input to each SCT
instance is simply the selected trees of patients assigned to that cluster.
The output is a consensus tree minimizing the parent-child distance to the
input trees. Note that this is equivalent to minimizing the unnormalized
parent-child distance; since we assume all patients have the same vertex
set, the vertex symmetric diffrence in the numerator is equal to zero and
normalization term in the parent-child distance function just becomes a
constant scaling factor.

To perform step (ii), we iterate over all input trees for each patient.
For each tree, we calculate the parent-child distance to the consensus tree
for each cluster. We then select the tree and cluster that minimizes this
distance for each patient.

While this algorithm is a heuristic, the total parent-child score is
monotonically decreasing with each iteration. In step (i), the updated
consensus tree is guaranteed to be optimal and so can only decrease the
score. In step (ii), the tree selection and cluster assignment is only changed
if it decreases the score. We restart the algorithm a user-specified number
of times, each time with a different random initialization, and return the
solution with minimum parent-child distance.

4.2 Varying mutation sets

We now adapt Algorithm 1 to be able to handle patients that have different
sets of mutations. When patients in the input data have different mutation
sets, some patients have many more mutations than other patients. When
this occurs, minimizing the parent-child distance can often be achieved
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Fig. 4: An example of an optimal expansion of the mutation clusters of
a tree T with respect to an expanded tree R. Tree T contains mutation
clusters, whereas tree R does not. Each mutation is denoted by a colored
triangle. Matching edges betweenR and the expanded tree T ′ are denoted
with a dashed line.

by putting the most massive trees alone in their own clusters with an
identical consensus tree. To avoid this degenerate scenario, we introduce
normalization to our distance function (see Definition 2).

On trees with identical vertex sets, optimizing this normalized
distance simply reduces to optimizing the parent child distance, as we
discussed above. However, with varying mutation sets, the numerator
term containing the symmetric difference in vertex sets can no longer
be assumed equal to zero. In most places in our algorithm, we can simply
swap the distance function to normalized distances. However, this cannot
immediately done in step (i) since the SCT subroutine is designed to work
on identical mutation sets and unnormalized distances.

To address this problem, we augment the input patient trees so that all
augmented trees are on the same vertex set. As described in Section 2, all
input trees share the same root vertex corresponding to the germline clone.
We first add a new vertex labeled⊥ as a child of this shared root in all trees.
For each patient tree, we then add new vertices for all mutations the tree is
missing and attach each one as a child of⊥. We then run the algorithm as
previously described on these augmented input trees. After the algorithm
terminates, we post-process the consensus trees to remove the ⊥ vertex
along with all of its descendants, which we interpret as missing from this
cluster.

The intuition behind this heuristic reduction is as follows. Consider
a mutation b appearing in one tree but not the other. This mutation
increases the vertex symmetric difference term in the normalized parent-
child distance numerator. After augmenting the trees as described, this
increase will now be captured by the symmetric difference in the edge sets
of the augmented trees; the tree missing the mutation will now have the
edge (⊥, b), which is not contained in the other tree by construction.

4.3 Mutation clusters

In practice, patient input trees may have vertices that do not correspond
to a single mutation, but in fact correspond to a set of mutations. We
call vertices with multiple mutations mutation clusters. We interpret these
mutation clusters as implicitly representing another type of ambiguity in
the patient trees where the linear ordering of mutations in the vertex is
unknown. We wish to resolve all mutation clusters into a linear ordering of

the mutations by leveraging information across patients. However, a naive
expansion of all mutation clusters in all possible ways may dramatically
increase the set of patient trees.

Solving the following optimization problem would allow us to resolve
these clusters without explicitly enumerating all possible expansions. To
start, we define an expansion of a mutation cluster as follows (Fig. 4).

Definition 3. An expansion of a mutation clusterC is an ordered sequence
Π(C) of the mutations in C.

Similarly, an expanded tree T ′ of T is obtained by expanding all
mutation clusters of T into paths.

Problem 4. (Optimal Cluster Expansion (OCE)) Given a tree R with no
mutation clusters and a tree T with at least one mutation cluster, find a
tree T ′ such that (i) T ′ is an expansion of T , and (ii) T ′ minimizes the
normalized parent-child distance to R out of all tree expansion of T .

We observe that when expanding mutation clusters, we cannot expand
each mutation cluster in isolation since abutting clusters have edges that
interact. Therefore, to solve this problem, we use dynamic programming
(DP). The details of the polynomial time DP algorithm are given in
Appendix B. To incorporate support for mutation clusters into Algorithm 1,
we run the DP subroutine on each patient tree considered in step (ii). This
gives us the score of the best expansion of each tree in polynomial time,
avoiding an exponential blow-up of the input tree set.

4.4 Model selection

In the above section, we gave the number k of clusters as an input to our
algorithm. Clearly, the total normalized parent-child distance will decrease
with increasing numberk of clusters, withk = n leading to a total distance
of 0. Thus, we must choose the number of clusters necessary to explain
the data without overfitting. Intuitively, what we seek is the the minimum
number of clusters k, after which introducing additional clusters no longer
leads to a meaningful decrease in our optimization criterion. In other words,
this is the point at which the normalized parent-child distance “flattens”.
We capture this intuition with the following elbow approach.

Given an absolute threshold ta ≥ 0 and a percentage threshold
tp ∈ (0, 1), we seek the largest k such that the following two conditions
hold: (1) the change in the optimization criterion between k − 1 and k is
greater than ta, and (2) the percentage change in the optimization criterion
between k − 1 and k is greater than tp. Selecting the largest k meeting
these two conditions ensures that all larger k values must have a small
marginal changes. The use of an absolute threshold just ensures that for
normalized parent-child distances very close to 0, a fractional change to
the total cost does not trigger the percentage change criterion. In practice,
we set ta = 0.5 and tp = 0.05.

5 Results
Section 5.1 compares RECAP to HINTRA (Khakabimamaghani et al.,
2019) and REVOLVER (Caravagna et al., 2018) on simulated data,
whereas Section 5.2 highlights the use of RECAP to identify repeated
evolutionary trajectories in a non-small cell lung cohort (Jamal-Hanjani
et al., 2017) and a breast cancer cohort (Razavi et al., 2018).

5.1 Simulations

We use simulations to evaluate our method. We generate three sets of
simulation instances, with varying total number |Σ| of mutations and
number ` mutations per cluster. The first set has |Σ| = ` = 5 mutations,
the second set |Σ| = 12 total mutations and ` = 7 mutations per cluster
and the third set |Σ| = ` = 12 mutations. For each set, we generate
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Fig. 5: Simulations show that RECAP accurately solves the MCCT problem, outperforming HINTRA (Khakabimamaghani et al., 2019) and
REVOLVER (Caravagna et al., 2018). We show results for all simulation conditions. (a) The fraction of patients with correctly inferred trees by each
method. (b) The number k of patient clusters inferred by each method. (c) The fraction of patient pairs that are correctly clustered together. (d) The
fraction of patient pairs that are correctly put in separate clusters. Panel (a) shows only |Σ| = ` = 5 results for HINTRA, due to scaling issues. No results
are shown in (b)-(d) for HINTRA, as this method does not infer patient clusters.

simulated instances with varying number k∗ ∈ {1, 2, 3, 4, 5} of clusters
and number n ∈ {50, 100} of patients, yielding an MCCT instance
T = {T1, . . . , Tn} and solution (R∗,Γ∗, σ∗) as follows. First, we
draw the patient clustering σ∗ : [n] → [k] from a Dirichlet-multinomial
distribution with concentration parameters α1 = . . . = αk = 10 and
the number of trials equal to the number of patients n. Next, for each
cluster j ∈ [k], we randomly pick ` mutation without replacement from
the set Σ, ensuring that mutation 0 is among the picked mutations. We then
randomly generate a consensus tree R∗j using Prüfer sequences (Prüfer,
1918), rooted at mutation 0. To obtain the set Ti of trees of patient i ∈ [n],
we simulate a bulk sequencing experiment by generating a matrix F of
variant allele frequencies (with 5 bulk samples) obtained from mixing
the vertices of the corresponding consensus tree Rσ(i), and subsequently
running SPRUCE (El-Kebir et al., 2016). For each simulation instance,
parameterized by |Σ|, `, n and k, we generate 20 instances. This amounts
to a total of 3 · 2 · 5 · 20 = 600 instances.

We compare RECAP (50 restarts) to HINTRA (Khakabimamaghani
et al., 2019) and REVOLVER (Caravagna et al., 2018) (with default
parameters, see Appendix C). Fig. 5a shows that RECAP correctly selects

the ground truth tree for each patient. REVOLVER, by contrast, only does
so when the number k∗ of simulated clusters equals 1 and performance
decreases with increasing k∗. Indeed, in REVOLVER’s model patient
trees originate from a single generative model (which is a directed graph).
This model assumption breaks down when there are distinct generative
models, with varying sets of edges, for each patient cluster as is the
case in our simulations. We were only able to run HINTRA for the
|Σ| = ` = 5 simulation instances, resulting in poor performance for
varying number k∗ of simulated clusters. Fig. 5b shows that RECAP’s
model selection criterion correctly identifies the simulated number k∗ of
clusters. REVOLVER’s performance is slightly worse that RECAP, often
overestimating the number of clusters. Next, we assess the accuracy of
the patient clustering of RECAP and REVOLVER. Note that we did not
include HINTRA in this analysis, as it is does not possess the capability
to group patients into clusters with similar evolutionary trajectories. We
find that RECAP correctly assigns pairs of patients to the same cluster
(recall, Fig. 5c) and also correctly groups patients into distinct clusters
(precision, Fig. 5d). Finally, we assess in Fig. Fig. S5 RECAP’s stability
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Fig. 6: RECAP identies repeated evolutionary patterns in a non-small cell lung cancer cohort, resolving ambiguities in the solution space and
expanding mutaiton clusters. We show results for running RECAP on TRACERx (Jamal-Hanjani et al., 2017). (a) The criterion scores obtained by
each cluster across different values for k. As k increases, the total normalized distance decreases and levels off at k = 10, which RECAP selects. (b)
The number of patient trees assigned to each cluster. (c) In the input data, 10 out of 16 patients that RECAP assigns to Cluster 4 have TP53 and EGFR
together in a mutation cluster. (d) Patient CRUK0015 is also assigned to Cluster 4 and has an edge from EGFR to TP53. This information resolves the
mutation cluster for these 10 patients via the consensus tree (red edges, edge label indicating number of patients) for this cluster.

with varying number of restarts, showing that RECAP quickly converges
onto the ground truth solution.

In summary, our simulations demonstrate that RECAP outperforms
existing methods, correctly reconstructing distinct evolutionary trajectories,
selecting the correct tree per patient and correctly clustering patients
together.

5.2 Real data

Non-small cell lung cancer cohort. We first run RECAP on the TRACERx
dataset from (Jamal-Hanjani et al., 2017), which contains whole-exome
sequencing (500x depth) of tumors taken from patients (n = 99) with
with non-small cell lung cancer. In the original study, phylogenetic trees
were reconstructed for each patient with some patients having more than
one proposed tree (median: 1 tree, maximum: 14 trees). The number of
clones per patient ranges from 2 to 15. Furthermore, 85 patients have
trees containing at least one mutation cluster, with a maximum mutation
cluster size of 11. We additionally process these trees by restricting them
to recurrent driver mutations, which we define to be mutations appearing
in at least 10 patients. We run RECAP on this dataset with k ranging from
1 to 15 and with 5,000 restarts.

RECAP’s model selection criterion identifies k = 10 distinct clusters
(Fig. 6a). We note that as k increases, the clusters remain fairly stable
in terms of the consensus trees found and the patient clustering, with
each incremental cluster typically subdividing a previous cluster (Fig. 6b).
The cluster size for the selected k ranges from a minimum of 4 patients
to a maximum of 21 patients assigned to a particular cluster. Six of the
consensus graphs we recover consist of at most one edge from germline to
a driver mutation. The remaining four consensus trees have between two
and three mutations.

We note that Caravagna et al. (2018) likewise reported 10 distinct
clusters for this dataset. Of these, the authors found five to have the

strongest signal (C2, C3, C4, C6, C8). RECAP returns a consensus tree
exactly matching two of these clusters, and very similar consensus trees
for the remaining clusters. Moreover, the patients in these clusters are
similarly clustered by RECAP.

We discuss Cluster 4 from RECAP, which we use as an illustrative
example of how RECAP can use patterns observed in other patients to
resolve ambiguities due to mutation clusters (Fig. 6c). The consensus
tree for Cluster 4 contains an edge from germline to EGFR followed
by an edge from EGFR to TP53 (matching cluster C4 in REVOLVER).
We observe that in the input data, patient CRUK0015 has a single
tree that after processing contains both of these edges, ordering EGFR
and TP53 (Fig. 6d). As we would expect, patient CRUK0015 is
assigned to Cluster 4. Moreover, this information then transfers via the
consensus tree to resolve mutation clusters for 10 other patients in this
cluster including CRUK0001, CRUK0004, CRUK0022, CRUK0024,
CRUK0026, CRUK0048, CRUK0049, CRUK0051, CRUK0058, and
CRUK0080. Indeed, it has been previously observed that EGFR and TP53
frequently co-occur, potentially having important clinical implications,
and that in some patients EGFR proceeds TP53 VanderLaan et al. (2017).

Breast cancer cohort. Razavi et al. (2018) performed targeted sequencing
of 1,918 tumors from 1,756 breast cancer samples, identifying copy
number aberrations and single-nucleotide variants (SNVs) using a panel
comprised of 468 genes. Here, we restrict our analysis to the subset of
n = 1, 315 patients with SNVs that occur in copy neutral autosomal
regions. For each patient, we run SPRUCE (El-Kebir et al., 2016) to
enumerate all tumor phylogenies that explain the variant allele frequencies
of the copy-neutral SNVs. Specifically, we identify between 1 to 6,332
trees per patient (median: 1). We further process these trees by restricting
them to mutations that occur in at least 100 patients, yielding a set Σ of
eight mutations. We run RECAP on this dataset with k ranging from 1 to
15 and with 1,000 restarts.
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Fig. 7: RECAP finds a stable patient clustering and resolves ambiguities in a breast cancer cohort by identifying shared evolutionary patterns. We
show results for running RECAP on a breast cancer cohort (Razavi et al., 2018). (a) The criterion scores obtained by each cluster across different values
for k. As k increases, the total normalized distance decreases and levels off at k = 8, which RECAP selects. (b) The number of patient trees assigned
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RECAP’s identifies k = 8 distinct clusters for this dataset (Fig. 7a).
Similarly to the lung cancer cohort, the clusters remain fairly stable in
terms of the consensus trees found and the patient clustering (Fig. 7b). The
cluster size for the selected k ranges from a minimum of 55 patients to a
maximum of 410 patients assigned to a particular cluster. Two consensus
trees have two mutations, the remaining six are comprised of a single
mutation. We focus our attention on Cluster 1, comprised of 71 patients.
In particular, Patient P-0004859 has two input trees (Fig. 7c): TP53 and
PIK3CA are children of MAP3K1 in tree T1 while tree T2 has a chain
from MAKP1 to PIK3CA to TP53. As the consensus tree of this cluster
has an edge from germline to EGFR and an edge from EGFR to TP53,
RECAP selects tree T2 for this patient (Fig. 7d). In turn, the consensus
tree was informed by the mutation orderings of other patients, revealing
shared evolutionary trajectories. In this way, the consensus tree facilitates
the transfer of information across patients to resolve ambiguities in the
solution space.

Previously, Khakabimamaghani et al. (2019) used HINTRA to
analyze this dataset, manually splitting the patients into four subtypes
based on receptor status (HR+/HER2-, HR+/HER2+, HR-/HER2+
and Triple Negative). In the HR+/HER2- subtype, the authors found
CDH1 commonly precedes PIK3CA. Without prior knowledge, RECAP
recapitulates this finding in Cluster 7 with a consensus tree comprised of an
edge from germline to CDH1 and then CDH1 to PIK3CA. When analyzing
the 93 patients assigned to this cluster, we see that 87 patients (∼ 93.5%)
belong to the HR+/HER2- subtype. This finding demonstrates RECAP’s
ability to uncover cancer subtypes based on evolutionary trajectories.

6 Discussion
In this paper, we formulated an optimization problem for simultaneously
selecting a phylogeny for each patient in a cancer cohort, clustering
these patients to account for subtype heterogeneity, and identifying a
representative consensus tree for each patient cluster. After establishing
the hardness of this problem, we proposed RECAP, a coordinate ascent
algorithm as a heuristic for solving this problem. We included with this
algorithm a way to handle patients with different sets of mutations as
well as mutation clusters, something not previously handled in this line of
work. The fact that our algorithm is capable of running over patients with
different mutation clusters is particularly necessary in the whole-genome
context, where the number of mutations necessitates clustering and there
is variations in these clusters across patients. Moreover, we included a
model selection criterion for identifying the number k of subtypes needed
to explain a dataset. We validated our approach on simulated data, showing
that RECAP outperforms existing methods that do not support diverse
evolutionary trajectories. We demonstrated the use of RECAP on real
data, identifying well-supported evolutionary trajectories in a non-small
cell lung cancer cohort and a breast cancer cohort.

This work put forth a general framework for defining clusters of
patients while reducing ambiguity inherent to the input data. We believe
that this framework is adaptable and can be used to structure several
avenues for future work. Broadly, these questions surround what makes
two cancer phylogenies meaningfully similar and what are relevant
underlying models that should be used to summarize shared evolutionary
patterns. For instance, we currently support a variation on the parent-
child distance to evaluate the difference between trees. However, there
are other types of distance measures, such as the ancestor-descendent
distance (Govek et al., 2018) or MLTD (Karpov et al., 2019), that
weigh discrepancies between trees differently. Exploring the trade-offs
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between distance metrics in more depth could lead to new insights. We
currently require the consensus for each cluster to be a tree, but other
graphical structures such as directed acyclic graph could be considered.
This is especially useful when trying incorporate mutual exclusivity of
drivers mutations that occur in the same pathway into the inference.
We could also consider incorporating auxiliary information, such as
mutational signatures, into our model either via constraints or a secondary
optimization criterion in order to test how clusters change when accounting
for this incremental signal. Indeed, using mutational signatures as a
constraint to improve the estimation of just a single patient tree has recently
been done in Christensen et al. (2020). On the theoretical side, we note
that the current formulation is done using the infinite sites assumption. We
hope to expand this work to the more comprehensive k-Dollo evolutionary
model that allows for mutation losses (El-Kebir, 2018). Exploring such
variations will not only shed light on solution space summarization, but
will also shed light on the common evolutionary models generating the
mutation patterns we observe in patient cohorts.
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