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Abstract

Motivation: Cancer is characterized by intra-tumor heterogeneity, the presence of distinct cell populations
with distinct complements of somatic mutations, which include single-nucleotide variants (SNVs) and
copy-number aberrations (CNAs). Single-cell sequencing technology enables one to study these cell
populations at single-cell resolution. Phylogeny estimation algorithms that employ appropriate evolutionary
models are key to understanding the evolutionary mechanisms behind intra-tumor heterogeneity.
Results: We introduce Single-cell Phylogeny Reconstruction (SPhyR), a method for tumor phylogeny
estimation from single-cell sequencing data. In light of frequent loss of SNVs due to CNAs in cancer,
SPhyR employs the k-Dollo evolutionary model, where a mutation can only be gained once but lost k
times. Underlying SPhyR is a novel combinatorial characterization of solutions as constrained integer
matrix completions, based on a connection to the cladistic multi-state perfect phylogeny problem. SPhyR
outperforms existing methods on simulated data and on a metastatic colorectal cancer.
Availability: SPhyR is available on https://github.com/elkebir-group/SPhyR
Contact: melkebir@illinois.edu

1 Introduction
Cancer is a genetic disease that results from an evolutionary process,
where somatic mutations accumulate in a population of cells (Nowell,
1976). These mutations arise during the lifetime of an individual and
vary in genomic scale, ranging from single-nucleotide variants (SNVs)
that affect a single base to copy-number aberrations (CNAs) that affect
large genomic regions. Many generations of cell division, mutation and
selection yield a highly heterogeneous tumor, composed of different
groups of cancerous cells, where each group is characterized by a
different complement of somatic mutations. This phenomenon is known
as intra-tumor heterogeneity, and has important implications for both our
understanding of cancer progression and for treatment outcome (Tabassum
and Polyak, 2015). Knowledge on the evolutionary history of the cells of a
tumor enables one to understand the mechanisms that result in intra-tumor
heterogeneity. Unfortunately, DNA sequencing data alone do not describe
the evolutionary history of a tumor. Rather, they only give us mutational
information about a subset of tumor cells present at the time of sequencing.

Similarly to the evolution of species and languages, the evolutionary
history of tumor cells can be appropriately modeled by a phylogenetic
tree. We consider a character-based phylogenetic tree T , whose leaves,

or taxa, correspond to cells sequenced at the present time, and whose
internal nodes correspond to ancestral cells. Each node of T is labeled by
the set of characters, or mutations, it contains. The root node is a non-
mutated, normal cell. To reconstruct T from sequencing data, we require a
generative model for the sequencing data and an evolutionary model forT .

Most cancer sequencing studies use bulk DNA sequencing, where one
obtains short reads from hundreds of thousands of cells that are sequenced
in bulk. These mixed measurements must be deconvolved to quantify
intra-tumor heterogeneity. More recently, single-cell sequencing (SCS)
has been proposed as alternative to bulk sequencing in cancer (Navin,
2014). Contrary to bulk sequencing, individual tumor cells are sequenced
in SCS and thus one directly observes the leaves of T . However, current
SCS technology is very error-prone and suffers from elevated rates of
false positives, false negatives and missing data (Fig. 1). These errors
can be corrected by estimating the phylogenetic tree T , describing the
evolutionary history of all mutations. This task requires an evolutionary
model.

Evolutionary models constrain changes of characters along the edges
of T . A character can either be gained or lost on each edge of T . Multiple
gains of the same character indicate parallel evolution, whereas losses
indicate back mutation. A tree T whose characters do not exhibit parallel
evolution or back mutation/loss is said to be homoplasy-free. The infinite
sites model or perfect phylogeny model requires that T is homoplasy-free.

© El-Kebir 2018. 1
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Fig. 1. Tumor phylogeny estimation from single-cell sequencing (SCS) data. Heterogeneous tumors are composed of distinct cellular populations with distinct complements of
somatic mutations, including single-nucleotide variants (SNVs) and copy-number aberrations (CNAs). During cancer progression, SNVs are frequently lost due to copy-number aberrations,
but rarely introduced more than once. Here, single-cell sequencing of a tumor yields an input matrix D, whose m rows are cells and n columns are SNVs. Matrix D has incorrect and/or
missing entries. We aim to simultaneously correct errors in matrix D and infer the evolutionary history of the m cells, yielding output matrix B and the corresponding phylogenetic
tree T . The evolutionary model employed by our method SPhyR is the k-Dollo parsimony model, where each SNV can only be gained once but lost at most k times. SPhyR is based on a
combinatorial characterization of k-Dollo phylogenetic trees T as k-Dollo completionsA of a binary matrixB.

This model has been used extensively in cancer genomics for both bulk
sequencing data (Nik-Zainal et al., 2012; Deshwar et al., 2015; Malikic
et al., 2015; Popic et al., 2015; El-Kebir et al., 2015; Yuan et al., 2015;
Dang et al., 2017) and single cell sequencing data (Jahn et al., 2016;
Ross and Markowetz, 2016). Importantly, while parallel evolution of
SNVs is rare in cancer, losses of SNVs are ubiquitous due to wide-spread
copy-number loss of large genomic regions (Kuipers et al., 2017). Thus,
less restrictive evolutionary models are essential to accurately model the
somatic mutational process of SNVs in cancer. Recently, Zafar et al. (2017)
introduced a phylogeny estimation algorithm that is based on the finite sites
model. In this model, a character may change state more than once, and
thus parallel evolution and mutation loss may occur. The Dollo parsimony
model (Dollo, 1893) is a slightly more restrictive evolutionary model: a
character may only be gained once but lost multiple times. That is, the
Dollo parsimony model allows back mutation/loss but does not allow for
parallel evolution. This model has been applied recently in the context of
tumor phylogeny estimation from bulk sequencing data (Bonizzoni et al.,
2017b). As the main source of homoplasy in cancer evolution is due to loss
of SNVs caused by copy-number aberrations, the Dollo parsimony model
provides a good evolutionary model for the evolution of SNVs in cancer.

Here, we consider the k-Dollo parsimony model, which restricts
the Dollo parsimony model to at most k losses per character. We
show that the problem of inferring a k-Dollo phylogeny given an error-
free binary matrix B is a variant of the cladistic multi-state perfect
phylogeny problem (Fernández-Baca, 2000). We prove that solutions
to this problem are constrained integer matrix completions of the input
matrix B (Fig. 1), allowing us to derive an efficient integer linear
programming formulation that solves practical problem instances in
seconds. We introduce SPhyR (Single-cell Phylogeny Reconstruction),
a coordinate-ascent based approach that infers a k-Dollo phylogeny from
single-cell sequencing data with errors. On simulated data, we show that
SPhyR outperforms existing methods, that are either based on the infinite
sites or the finite sites evolutionary model, in terms of solution quality
and run time. On real data, we show that SPhyR provides a likelier
explanation of the evolutionary history of a metastatic colorectal cancer.
In summary, SPhyR enables detailed evolutionary analyses of single-cell
cancer sequencing data.

2 Problem Statement
We consider a tumor composed of m cells that contain n SNVs. In the
following, we refer to SNVs as mutations. We model the mutation state
of an SNV locus as a binary character, where the 1-state denotes the

presence of the mutation at the genomic locus and the 0-state its absence.
We represent the cell division and mutation history of the m tumor cells
by a character-based phylogenetic tree T , which is a rooted, node-labeled
tree. Each node v of T is labeled by a binary vector bv ∈ {0, 1}n,
indicating the mutation state of each character. As the root node r of T
is a non-mutated, normal cell, we have that br,c = 0 for all characters
c ∈ [n], where [n] = {1, . . . , n}. Each leaf of T corresponds to exactly
one of the m cells. Here, our goal is to reconstruct a phylogenetic tree T
when only given its leaves. That is, as input, we are given a binary matrix
B ∈ {0, 1}m×n that defines the character states of the m leaves of T .
This task requires an evolutionary model.

An edge (v, w) where bv,c = 0 and bw,c = 1 corresponds to a
gain of character c—multiple gains of the same character indicate parallel
evolution. On the other hand, an edge (v, w) of T where bv,c = 1 and
bw,c = 0 corresponds to a loss or back mutation of character c. In the
Dollo parsimony model (Dollo, 1893), a character may only be gained once
but lost multiple times. Here, we consider the k-Dollo parsimony model,
which restricts the Dollo parsimony model to at mostk losses per character.
We call a tree whose characters evolve under thek-Dollo parsimony model,
a k-Dollo phylogeny, which we formally define as follows.

Definition 1. Ak-Dollo phylogenyT is a rooted, node-labeled tree subject
to the following conditions.

1. Each node v of T is labeled by a vector bv ∈ {0, 1}n.
2. The root r of T is labeled by vector br = [0, . . . , 0]T .
3. For each character c ∈ [n], there is exactly one gain edge (v, w) in

T such that bv,c = 0 and bw,c = 1.
4. For each character c ∈ [n], there are at most k loss edges (v, w) in

T such that bv,c = 1 and bw,c = 0.

Let B ∈ {0, 1}m×n. A tree T is a k-Dollo phylogeny for B if and
only if T is a k-Dollo phylogeny with m leaves such that each row of
B labels exactly one leaf of T . We call B a k-Dollo phylogeny matrix
provided there exists a k-Dollo phylogeny T for B. Thus, we have the
following problem.

k-Dollo Phylogeny problem (k-DP). Given a binary matrix B ∈
{0, 1}m×n and parameter k ∈ N, determine whether there exists a
k-Dollo phylogeny for B, and if so construct one.

The k-DP problem assumes error-free data. In real data, however, the
error-prone whole-genome amplification step in single-cell sequencing
results in an input matrixD with false positives (incorrect 1-entries), false
negatives (incorrect 0-entries), and missing data (‘?’-entries). To correct
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these errors, we assume an evolutionary model without parallel evolution
and at most k losses per character, i.e. the k-Dollo parsimony model.
The task is thus to fill in the missing entries and fix incorrect entries of
matrix D ∈ {0, 1, ?}m×n, yielding matrix B ∈ {0, 1}m×n and a k-
Dollo phylogeny T for B. The false positive rate α ∈ [0, 1] and the false
negative rate β ∈ [0, 1] can be estimated from sequencing data of normal
cells. Thus, the probability of observing matrix D given matrix B, false
positive rate α and false negative rate β is

Pr(D | B,α, β) =

m∏
p=1

n∏
c=1

Pr(dp,c | bp,c, α, β), (1)

where

Pr(dp,c | bp,c, α, β) =



α, dp,c = 1 and bp,c = 0

1− α, dp,c = 1 and bp,c = 1,

β, dp,c = 0 and bp,c = 1,

1− β, dp,c = 0 and bp,c = 0,

1, dp,c = ?

(2)

The clonal evolution theory of cancer posits that only a small
number of mutations are beneficial to the tumor and result in clonal
expansions (Nowell, 1976). That is, a driver mutation that leads to a
clonal expansion is often preceded by many passenger mutations that do
not confer an evolutionary advantage to the tumor. As such, groups of
mutations either are all present or absent in a tumor cell, and thus cluster
on distinct branches of the phylogenetic tree. Moreover, cells originate
from a small number of clones. Hence, we expect the output matrix B to
contain multiple sets of repeated columns and repeated rows, which each
correspond to a distinct branch and distinct clone, respectively. This leads
to the following problem.

k-Dollo Phylogeny Flip and Cluster problem (k-DPFC). Given matrix
D ∈ {0, 1, ?}m×n, error rates α, β ∈ [0, 1], integers k, s, t ∈ N, find
matrix B ∈ {0, 1}m×n and tree T such that: (1) B has at most s unique
rows and at most t unique columns; (2) Pr(D | B,α, β) is maximum;
and (3) T is a k-Dollo phylogeny for B.

3 Methods

3.1 Combinatorial structure and complexity

We will show that the k-DP problem is a variant of the cladistic multi-state
perfect phylogeny problem with an unknown subset of incorrect 0-entries.
A perfect phylogeny is defined as follows.

Definition 2 (Estabrook et al. (1975); Gusfield (1991)). A rooted, node-
labeled tree T is a perfect phylogeny provided the following conditions
hold.

1. Each node v of T is labeled by a vector av ∈ {0, . . . , k + 1}n.
2. The root r of T is labeled by vector ar = [0, . . . , 0]T .
3. Nodes labeled with state i for character c form a connected subtree

T(c,i) of T .

Each character state (c, i) ∈ [n]× [k+1] corresponds to the root node
v(c,i) of the subtree T(c,i). For each character c ∈ [n], character states
(c, 0) correspond to the root node r ofT . Thus, each of v(1,0), . . . , v(n,0)
denote the root node r. We write (c, i) �T (d, j) if and only if node v(c,i)
is on the unique path from the root of T to node v(d,j). Note that �T is
reflexive.

Given an integer matrixA ∈ {0, . . . , k+1}m×n, we say that a treeT
is a perfect phylogeny T forA if and only if T is a perfect phylogeny with

m leaves such that each row of A labels exactly one leaf of T . We call an
integer matrixA a perfect phylogeny matrix provided there exists a perfect
phylogenyT forA. The problem of constructing a perfect phylogeny from
a given matrix A is known as the perfect phylogeny problem.

For k = 0, i.e. the two-state case, solutions to the perfect phylogeny
problem are fully characterized as follows.

Theorem 1 (Perfect Phylogeny Theorem (Gusfield, 1991)). A binary
matrix A ∈ {0, 1}m×n is a perfect phylogeny matrix if and only if
no two columns of A contain the three pairs (1, 0); (0, 1) and (1, 1).

The above condition is known as the three gamete condition and can be
constructively checked in linear time O(mn) (Gusfield, 1991). For any
constant k, the perfect phylogeny problem is solvable in time polynomial
in m and n (Agarwala and Fernández-Baca, 1994; Kannan and Warnow,
1997). However, if none of m, n or k are fixed, the perfect phylogeny
decision problem is NP-complete (Bodlaender et al., 1992).

We consider a restriction of the fixed k ≥ 0 perfect phylogeny
phylogeny problem, where, in addition to matrix A, we are given a state
tree S for each character. This problem is known as the cladistic perfect
phylogeny problem, where for each character the given state tree imposes
an ordering on the states of that character.

Definition 3 (Fernández-Baca (2000)). A state tree S is a rooted, node-
labeled tree, whose root node is labeled by state 0, and whose other nodes
are uniquely labeled by states {1, . . . , k + 1}.

We write i �S j if and only if for the two nodes vi and vj of S,
labeled by i and j, respectively, it holds that vi is on the unique path from
the root of S to vj . A perfect phylogeny T is consistent with state tree S
for character c provided: i �S j if and only if (c, i) �T (c, j) for all
states i, j ∈ {0, . . . , k + 1}. We now review a connection between the
cladistic multi-state perfect phylogeny problem and the two-state perfect
phylogeny problem. Given matrix A ∈ {0, . . . , k + 1}m×n and state
trees S = {S1, . . . , Sn}, the m × n(k + 1) binary factor matrix B′ of
(A,S) is defined as follows (Supplementary Fig. A1).

Definition 4 (Fernández-Baca (2000)). Let A ∈ {0, . . . , k + 1}m×n

and let S = {S1, . . . , Sn} be a set of state trees for each character. The
binary factor matrixB′ = [b′p,e] of (A,S) has dimensionsm×n(k+1),
and entries

b′p,e =

{
0, if i 6�Sc ap,c,

1, if i �Sc ap,c.
(3)

where c = be/(k + 1)c + 1, i = (e mod (k + 1)) + 1 and Sc is the
state tree of character c.

Formally, the cladistic perfect phylogeny problem asks to construct
a perfect phylogeny T for A whose characters are consistent with their
corresponding state tree. Unlike the general problem, this problem is
solvable in time O(mnk) using the binary factor matrix B′, as shown
by Fernández-Baca (2000).

Theorem 2 (Fernández-Baca (2000)). Matrix A has a perfect phylogeny
consistent with states trees S = {S1, . . . , Sn} if and only if the binary
factor matrix B′ of (A,S) is a perfect phylogeny matrix.

We will use the above result to introduce a characterization of k-
Dollo phylogenies as a subset of multi-state perfect phylogenies whose
characters are consistent with the k-Dollo state tree, defined as follows
(Supplementary Fig. A1).

Definition 5. The k-Dollo state tree S[k] is a state tree with nodes
{0, . . . , k + 1} and edges {(0, 1)} ∪ {(1, i) | i ∈ {2, . . . , k + 1}}.

Intuitively, the k-Dollo state tree encodes that there is exactly one gain
modeled by the edge (0, 1), and that there at most k losses modeled by
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edges {(1, i) | i ∈ {2, . . . , k+1}} that each must occur after the gain. To
decide whether a binary matrixB = [bp,i] is a k-Dollo phylogeny matrix,
we need to decide for each entry bp,i = 0 whether it is a loss or not. States
{2, . . . , k + 1} denote losses, and state 0 denotes that the mutation has
not occurred. Thus, we define a k-completionA of the 0-entries of a given
matrix B as follows.

Definition 6. Let B ∈ {0, 1}m×n. Matrix A ∈ {0, . . . , k + 1}m×n

is a k-completion of B provided (1) ap,c ∈ {0, . . . , k + 1} \ {1} if and
only if bp,c = 0; and (2) ap,c = 1 if and only if bp,c = 1.

We now define a restricted subset of k-completions that correspond to
k-Dollo phylogenies (Fig. 1 and Supplementary Fig. A1).

Definition 7. Let I(i) = {i, . . . , k + 1}. Matrix A ∈ {0, . . . , k +

1}m×n is a k-Dollo completion provided there exist no two columns and
three rows in A of the following form:i1 0

0 j1
i′1 j′1

 or

i1 j′′1
0 j2
i′1 j2

 or

i2 0

i′′1 j1
i2 j′1

 or

i2 j′′1
i′′1 j2
i2 j2


where i1, i′1, j1, j

′
1 ∈ I(1), i2, j2 ∈ I(2), i′′1 ∈ I(1) \ {i2} and j′′1 ∈

I(1) \ {j2}.

Thus, the number of forbidden 3×2 submatrices is (k+1)4+2k2(k+

1)2 +k4. Supplementary Table A1 lists all forbidden submatrices for k =

1. GivenB ∈ {0, 1}m×n, we say that a matrixA ∈ {0, . . . , k+1}m×n

is ak-Dollo completion ofB if and only ifA is ak-Dollo completion andA
is a k-completion ofB. We now prove that solutions to the k-DP problem
are k-Dollo completions of input matrix B.

Theorem 3. Let B ∈ {0, 1}m×n. The following statements are
equivalent.

1. There exists a k-Dollo phylogeny T for B.
2. There exists a k-Dollo completion A of B.
3. There exists a k-completion A of B such that the binary factor

matrix B′ of (A,S[k]) is a perfect phylogeny matrix.
4. There exists a k-completion A of B, and perfect phylogeny T for A

whose characters are consistent with S[k].

Proof. We refer to Supplementary Section A.2 for the full proof.

In the above theorem we established a connection between the k-
Dollo phylogeny problem and the cladistic multi-state perfect phylogeny
problem. This allows us to constructively determine whether a k-
completion A of B is a k-Dollo completion, as stated in the following
corollaries.

Corollary 1. Let B ∈ {0, 1}m×n. We can decide in O(mnk) time if
matrix A ∈ {0, . . . , k + 1}m×n is a k-Dollo completion of B.

Corollary 2. LetB ∈ {0, 1}m×n. Given a k-Dollo completionA ofB,
we can construct a k-Dollo phylogeny for B in O(mnk) time.

Note that the k = 0 case of the k-DP problem corresponds to the
two-state perfect phylogeny problem. In fact, the condition for a 0-Dollo
completion is precisely the three gamete condition. The k = 1 case is
known as the persistent phylogeny problem. An elegant reduction to a
binary matrix completion problem was introduced in (Bonizzoni et al.,
2012) and formed the basis of the integer linear program (ILP) introduced
by Gusfield (2015). In subsequent work, Bonizzoni et al. (2017b) extended
their binary matrix completion reduction to allow for k > 1 losses. We
note that the binary matrix used in these papers is precisely the binary
factor matrix obtained from the multi-state matrix A and state trees S[k].
While a restricted variant of the k = 1 case was recently shown to be

solvable in polynomial time (Bonizzoni et al., 2017a), the hardness for
k ≥ 1 remains an open question.

We now consider the k-DPFC problem. We prove that this problem is
NP-hard even for k = 0.

Theorem 4. The k-DPFC is NP-hard even for k = 0.

Proof. We show this by reduction from the Flip problem (Chen et al.,
2002), where one is given a binary matrix D ∈ {0, 1}m×n and integer
c ∈ N and asked to decide whether there exists a matrixB ∈ {0, 1}m×n

such that: (1) at most c entries inB differ fromD; and (2) no two columns
ofB contain the three pairs (1, 0); (0, 1) and (1, 1). A matrixB is said to
be conflict free if it satisfies condition (2). Let (D, c) be an instance of the
Flip problem. The corresponding instance of the k-DPFC problem has the
same input matrixD, has error ratesα = β < 0.5, does not constraint the
number s = m of unique rows and the number t = n of unique columns,
and requires k = 0 losses for each character.

We claim that there exists a conflict-free matrix B with at most c
distinct entries if and only if there exist a 0-Dollo phylogeny matrixB′ ∈
{0, 1}m×n with likelihood

Pr(D | B′, α, β) ≥ αc · (1− α)mn−c. (4)

(⇒) LetB ∈ {0, 1}m×n be a conflict-free matrix with at most c distinct
entries. It is easy to verify that Pr(D | B,α, β) = αc · (1 − α)mn−c.
Moreover, by the perfect phylogeny theorem (Theorem 1), we have that
B is a perfect phylogeny matrix and thus a 0-Dollo phylogeny matrix.
(⇐) LetB′ ∈ {0, 1}m×n be a 0-Dollo phylogeny matrix with likelihood
Pr(D | B,α, β) ≥ αc · (1− α)mn−c. Assume for a contradiction that
B′ has d > c entries that differ from matrix D. As α = β < 0.5, we
have that

Pr(D | B′, α, β) = αd · (1− α)mn−d < αc · (1− α)mn−c, (5)

which yields a contradiction. Hence, any matrixB′ with likelihood at least
αc · (1− α)mn−c must have at most c entries distinct from D.

3.2 Cutting plane and column generation for k-DP

In this section, we introduce an integer linear program (ILP) for the k-DP
problem. Let B = [bp,c] be an m× n binary input matrix and let k ∈ N
be the maximum number of losses per character.

We model each entry ap,c of the m × n output matrix A by binary
variables ap,c,0, . . . , ap,c,k+1 ∈ {0, 1} such that ap,c,i = 1 if and only
ap,c = i. To that end, we introduce the following constraints.

ap,c,i ∈ {0, 1} ∀p ∈ [m], c ∈ [n], i ∈ {0, . . . , k + 1} (6)

k+1∑
i=0

ap,c,i = 1 ∀p ∈ [m], c ∈ [n] (7)

We introduce the following constraints to ensure that A is a k-
completion of B.

ap,c,1 = 0 ∀p ∈ [m], c ∈ [n] s.t. bp,c = 0 (8)

ap,c,1 = 1 ∀p ∈ [m], c ∈ [n] s.t. bp,c = 1 (9)

In addition, we introduce the following symmetry breaking constraints.

m∑
p=1

n∑
c=1

ap,c,i ≥
m∑
p=1

n∑
c=1

ap,c,i−1 ∀i ∈ {3, . . . , k + 1} (10)

Recall that I(i) = {i, . . . , k+ 1}. For all distinct taxa p, q, r ∈ [m],
distinct characters c, d ∈ [n] and states i1, i′1, j1, j

′
1 ∈ I(1), i2, j2 ∈



i
i

“main” — 2018/7/11 — 12:38 — page 5 — #5 i
i

i
i

i
i

SPhyR 5

I(2), i′′1 ∈ I(1) \ {i2} and j′′1 ∈ I(1) \ {j2}, the following constraints
ensure that A does not contain one of the forbidden submatrices given in
Definition 7.

ap,c,i1 + ap,d,0 + aq,c,0 + aq,d,j1 + ar,c,i′1
+ ar,d,j′1

≤ 5 (11)

ap,c,i1 + ap,d,j′′1
+ aq,c,0 + aq,d,j2 + ar,c,i′1

+ ar,d,j2 ≤ 5 (12)

ap,c,i2 + ap,d,0 + aq,c,i′′1
+ aq,d,j1 + ar,c,i2 + ar,d,j′1

≤ 5 (13)

ap,c,i2 + ap,d,j′′1
+ aq,c,i′′1

+ aq,d,j2 + ar,c,i2 + ar,d,j2 ≤ 5 (14)

Givenk allowed losses per character, we aim to minimize the maximum
number of losses across all characters. To that end, we use an objective
function such that a single entry of A with state j > 2 incurs a cost that
is greater than the cost incurred when all entries of A have states at most
j − 1. We have the following integer linear program.

min

m∑
p=1

n∑
c=1

k+1∑
i=2

ap,c,i

(
1

mn

)k+1−i
(15)

s.t. (6)− (14)

In our ILP, the number of variables is O(mnk) and the number of
constraints is O(m3n2k4). As such, a naive implementation of this ILP
does not scale to practical problem instance sizes where typicallym = 50,
n = 100 and k = 1. To scale the ILP to large instances, we use column
and cutting plane generation, introducing variables and constraints only
as needed. More specifically, we use a slight variation of classic column
generation, and include all variables ap,c,i (where p ∈ [m], c ∈ [n], i ∈
{0, . . . , k + 1}) in the model, but alter their respective domains during
the procedure. First, observe that the minimum value of the objective
function (15) is 0, and is only attained in the absence of loss, i.e. when
ap,c,i = 1 if bp,c = i, and ap,c,i = 0 if bp,c 6= i. Initially, we set
ap,c,i ∈ {0} if bp,c 6= i and ap,c,i ∈ {0, 1} if bp,c = i. In addition, we
add constraints (7), (8), (9) and (10) to the model. We then solve the model.
The resulting minimum-cost solution might not be a k-Dollo completion
and thus violate constraints (11) − (14). For each pair c, d of distinct
characters, we identify violated constraints in O(mk3) time, along the
same lines as described in (Chimani et al., 2010). More specifically, we
consider each of the four forbidden submatrices in Definition 7 separately,
and scan the m rows for the presence of one of O(k3) forbidden pairs.
Let ap,c,i1 ap,d,j1

aq,c,i2 aq,d,j2
ar,c,i3 ar,d,j3

 (16)

be an identified forbidden submatrix for distinct characters c, d and distinct
taxa p, q, r. We introduce the associated violated constraint (which is
one of (11) − (14)). In addition, we evaluate each variable ap,c,i of
the identified forbidden submatrix. If i = 0, we extend the domain of
variable ap,c,2 such that ap,c,2 ∈ {0, 1}. If 2 ≤ i < k + 1, we set
ap,c,i+1 ∈ {0, 1}. In other words, when possible, we allow the ILP
to resolve violations that involve a variable with a 0-state or a fixed loss
state by enabling the use of (additional) loss states. Upon introducing
violated constraints and extending variable domains, we restart the ILP
and repeat the same procedure. We terminate if no violated constraints
are identified or if the ILP solver proves the model to be infeasible. This
procedure will either determine that no solution exists or it will result in a
k-Dollo completion with optimal cost. To see this, observe that additional
loss states can be introduced in an incremental fashion, as the objective
function guarantees that setting ap,c,i = 1 for a single entry, where i > 2,
results in a greater cost than any assignment of entries restricted to states
{0, 2, . . . , i − 1}. We refer to Supplementary Section A.3 for additional

Algorithm 1: SPhyR(D,α, β, k, s, t)

Input: Matrix D ∈ {0, 1, ?}m×n, a false positive rate α ∈ [0, 1],
a false negative rate β ∈ [0, 1] and natural numbers k, s, t

Output: k-Dollo completion A ∈ {0, . . . , k + 1}m×n with at
most s unique rows and at most t unique columns

1 E ← D

2 Set ep,c ← 0.5 for each entry dp,c =?

3 π ← kMeans(ET , s)
4 ψ ← kMeans(E, t)
5 L,∆←∞
6 while ∆ > 0 do
7 (A,B)← SolveAB(D,α, β, s, t, k, π, ψ)

8 for p← 1 to m do
9 π[p]← argmaxh∈[s]

∑n
c=1 log Pr(dp,c | bh,ψ(c), α, β)

10 for c← 1 to n do
11 ψ[c]← argmaxf∈[t]

∑m
p=1 log Pr(dp,c | bπ(p),f , α, β)

12 L′ ←
∑m
p=1

∑n
c=1 log Pr(dp,c | bπ(p),ψ(c), α, β)

13 ∆← L′ − L
14 L← L′

15 Expand A according to π and ψ
16 return A

details and pseudocode of the column generation procedure and the cut
separation step.

3.3 Coordinate ascent for k-DPFC

We introduce a heuristic to solve the k-DPFC problem, where we are
given as input a matrix D ∈ {0, 1, ?}m×n, a false positive rate α, a
false negative rate β and natural numbers k, s, t. We are asked to infer a
maximum likelihood m × n k-Dollo phylogeny matrix B with at most
s unique rows and t unique columns. Essentially, the k-DPFC problem
involves three sets of constraints. That is, we wish to (1) find a clusteringπ :

[m]→ [s] of them rows (taxa) ofD intos clusters, (2) find a clusteringψ :

[n]→ [t] of the n columns (characters) of D into t clusters, and (3) find
a k-Dollo phylogeny matrix B with dimensions s × t. These constraints
are connected by the objective function log Pr(D,π, ψ | B,α, β), which
equals

m∑
p=1

n∑
c=1

log Pr(dp,c | bπ(p),ψ(c), α, β), (17)

where Pr(dp,c | bπ(p),ψ(c), α, β) is defined in (2). Here, we propose to
optimize these three sets of constraints separately using coordinate ascent.

Computing π. We start with the problem of finding a maximum likelihood
row clustering π given a k-Dollo phylogeny matrix B and a column
clustering ψ of input matrix D. For each taxon p ∈ [m], we want to
find the row π(p) of B with maximum likelihood

π(p) = argmax
h∈[s]

n∑
c=1

log Pr(dp,c | bh,ψ(c), α, β). (18)

Computing π given B and ψ thus takes O(mns) time.

Computingψ. Similarly, we can compute the maximum likelihood column
clustering ψ given B and π in O(mnt) time:

ψ(c) = argmax
f∈[t]

m∑
p=1

log Pr(dp,c | bπ(p),f , α, β). (19)

Computing B. To compute the maximum likelihood k-Dollo phylogeny
matrix B given row clustering π and column clustering ψ, we use the
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same ideas as for the k-DP problem. That is, in addition to computing B
we also compute a k-Dollo completion A of B. As such, for each taxon
clusterh ∈ [s] and character cluster f ∈ [t], we introduce binary variables
ah,f,0, . . . , ah,f,k+1 and the following constraints.

ah,f,i ∈ {0, 1} ∀h ∈ [s], f ∈ [t], i ∈ {0, . . . , k + 1} (20)

k+1∑
i=0

ah,f,i = 1 ∀h ∈ [s], f ∈ [t] (21)

We have the same set of symmetry breaking constraints (10) and Dollo
phylogeny constraints (11) − (14)—however, note that we adjust these
constraints for use with s taxon clusters and t character clusters (instead of
m taxa andn characters). In contrast to the previous formulation, matrixA
may change the entries of matrixD and thus we do not include constraints
(8) and (9). LetX = [m]× [n]. We have the following objective function
and ILP.

min
∑

(p,c)∈X:
dp,c=0

[
aπ(p),ψ(c),1 log β + (1− aπ(p),ψ(c),1) log(1− β)

]

+
∑

(p,c)∈X:
dp,c=1

[
aπ(p),ψ(c),1 log(1− α) + (1− aπ(p),ψ(c),1) log(α)

]
(22)

s.t. (10)− (14), (20) and (21)

This ILP has O(stk) variables and O(s3t2k4) constraints. Again, we
use column generation to solve the ILP. To begin, we omit constraints
(11) − (14). To initialize the column generation procedure, we need to
determine an initial assignment of variables ah,f,i that maximizes the
objective function. In other words, for each taxon cluster h ∈ [s] and
character cluster f ∈ [t], we need to determine whether ah,c,1 = 1

or ah,c,1 = 0 maximizes the likelihood (22). This involves a simple
computation, which can be performed inO(mn) time for all pairs (h, f) ∈
[s] × [t]. For each pair (h, f) where ah,f,1 = 1 has greater likelihood
than ah,f,1 = 0, we set the domain of ah,f,1 to {0, 1} and the domains
of the remaining variables ah,f,i, where i ∈ {0, 2, . . . , k + 1}, to {0}.
On the other hand, if ah,f,1 = 0 has greater likelihood than ah,f,1 = 0,
we set the domain of ah,f,1 to {0} and the domains of the remaining
variables ah,f,i, where i ∈ {0, 2, . . . , k+ 1}, to {0, 1}. Similarly to the
column generation procedure for k-DP, we solve the model and identify
for each pair f, g of character clusters whether there exists a forbidden
submatrix in O(sk3) time. Upon finding such a forbidden submatrix, we
introduce the violated constraints and extend the domains of the involved
variables. More specifically, for each involved variable ah,f,i we extend
the domain of variable ah,f,1 to {0, 1} if i 6= 1; and if i = 1, we extend
the domains of variablesah,f,j to{0, 1}where j ∈ {0, 2, . . . , k+1}. We
subsequently restart the ILP, and repeat the same procedure. We terminate
when no violated constraints are identified. See Supplementary Section A.3
for additional details and pseudocode.

SPhyR. We initialize π and ψ using the k-Means algorithm. More
specifically, we replace the ?-entries of matrix D by 0.5, yielding a
matrixE. To obtain π, we cluster the columns of matrixE using k-Means
with k = s. Similarly, we obtain ψ by clustering the rows of matrix E
using k-Means with k = t. We then compute k-Dollo phylogeny matrix
B and its k-Dollo completion A given π and ψ, followed by updating π
and then ψ. We repeat these steps until convergence (Algorithm 1) and
allow the user to specify a number of restarts. In each restart, a different
random number generator seed is used, yielding a different initial taxon and
character clustering. We call the resulting algorithm Single-cell Phylogeny
Reconstruction (SPhyR, pronounced ‘sapphire’). SPhyR is implemented
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FNR(D) = �⇤

Fig. 2. Simulation setup and comparison measures. (a) Given the number m of
taxa and n of characters, we use the ms package (Hudson, 2002) to simulate a perfect
phylogeny tree. Subsequently, we introduce at most k losses per character using a rate
λ, yielding the simulated phylogenetic tree T∗ and matrix B∗ . (b) We then perturb the
entries of B∗ = [b∗p,c] given a false positive rate FPR(D) = α∗ and false negative
rate FPNR(D) = β∗ , yielding the input matrixD = [dp,c]. Entry dp,c = 0 is a true
negative (TN) if b∗p,c = 0 and a false negative (FN) if b∗p,c = 1. Conversely, dp,c = 1

is a false positive (FP) if b∗p,c = 0 and a true positive (TP) if b∗p,c = 1. (c) GivenD, α∗

and β∗ , a phylogeny estimation method yields output matrixB = [bp,c]. (d) In addition,
such a method outputs a phylogenetic tree T whose leaves form the rows of output matrix
B. (e) To compareT andT∗ , we compute the recall in terms of pairs of character states that
are ancestral (A), on distinct branches (incomparable, I), or on the same edge (clustered,
C). A recall of 1 for all three measures implies that (the internal nodes of) T and T∗ are
identical. To compare B and B∗ , we compute FPR(B) and FNR(B) — if both are 0
thenB = B∗ .

in C++ and uses the IBM ILOG CPLEX v12.8 library. SPhyR is open
source and available on https://github.com/elkebir-group/SPhyR.

4 Results

4.1 SPhyR solves practical k-DP instances in seconds

We used the ms package (Hudson, 2002) to simulate two-state perfect
phylogeny trees. We set the recombination parameter to 0, and used varying
number m ∈ {25, 50, 100} of taxa and number n ∈ {25, 50, 100}
of characters. For each combination of m and n, we simulated 20 two-
state perfect phylogeny matrices B∗ ∈ {0, 1}m×n. For each simulated
matrix B∗, we reconstructed its unique node-labeled perfect phylogeny
treeT ∗, contracting internal vertices with out-degree 1. Letb∗v ∈ {0, 1}n

be the states for each character at node v ofT . We subsequently introduced
losses in T ∗ and B∗ with a loss rate λ and maximum number k of losses
per character. More specifically, we performed a pre-order tree traversal:
for each edge (u, v) in T ∗ and character c ∈ [n] that has been lost at most
k − 1 times and where b∗u,c = 1, we introduced a loss for that character
with probability λ. That is, we set b∗v,c := 0 and b∗w,c := 0 for all
descendants w of v. We used varying number k ∈ {1, 2, 3} of maximum
losses per character and loss rates λ ∈ {0.1, 0.2, 0.4}. Thus, for each
combination of m, n and k, we generated 60 k-Dollo phylogenies.

We ran SPhyR in k-DP mode using a single thread on machines
with 2.6 GHz AMD Opteron 6276 CPUs and 64 GB of RAM. We
used a run time limit of five hours for each instance. We show results
for square input matrices in Fig. 3; results for all input instances are
shown in Supplementary Table A2. Our algorithm successfully solved
all instances with dimensions up to 100× 100 and at most k = 2 losses
per character in only a few seconds. For k = 3 character losses and
the same dimensions, SPhyR solved 75% of instances within the time
limit (Fig. 3a). We find that the running time increased with increasing
dimensions m × n and number k of character losses (Fig. 3b). The
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Fig. 3. Cutting plane and column generation enables SPhyR to efficiently solve
practicalk-DP instances. We show results form×n binary matricesB = [bp,c]where
m = n. (a) The number of solved instances for varying dimensions and maximum number
k of character losses. For each k and m × n, there are 60 simulated instances. SPhyR
solved all k = 1 instances (blue) to optimality, but exceeded the run time limit for k = 3

instances (red) with dimensions 100 × 100. (b) The run time in seconds (logarithmic
scale) increased with increasing k and m × n. (c) The fraction of entries bp,c = 0.
(d) The percentage of model variables ap,c,i instantiated during column generation. (e)
The percentage of model constraints (logarithmic scale) added during separation. (f) The
number of column generation iterations. Only a single iteration is required ifB is a perfect
phylogeny matrix.

complexity of k-DP instances is mainly due to the (relative) number of 0-
entries in the input matrixB, which increased with increasing dimensions
m× n and number k of character losses (Fig. 3c). Our cutting plane and
column generation procedure introduced only a tiny fraction of variables
(Fig. 3d) and constraints (Fig. 3e) into the model. Remarkably, the fraction
of generated variables and constraints decreased with increasing k, which
is due to the incremental fashion in which our method considers character
losses. Furthermore, our algorithm only required a small number of
iterations (Fig. 3f). We note that instances solved in a single iteration
correspond to perfect phylogeny instances.

In summary, despite the large fraction of 0-entries in practical problem
instances, our algorithm quickly identifies a small fraction of variables (and
constraints) that are relevant for solving the instance. As such, SPhyR is
able to solve practical k-DP problem instances with varying loss rates in
seconds.

4.2 SPhyR outperforms existing methods on simulated
single-cell sequencing data

We now consider the problem of phylogeny estimation from an input matrix
with incorrect entries. We generate such input matrices D = [dp,c] from
the k-Dollo phylogeny matrices B∗ = [bp,c] previously simulated with
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Fig. 4. SPhyR more accurately recovers the simulated matricesB∗ and trees T∗

than SCITE and SiFit. Given the same input matrix D, each method inferred an output
matrixB and phylogenetic tree T . (a-c) The tradeoff between the false negative rate (FNR)
and the false positive rate (FPR) for each matrix B output by each method. (d-f) Three
different measures that assess similarity between T∗ and T in terms of character states
occurring on the same branch (panel d), on distinct branches (panel e) and on the same edge
(panel f) in both T∗ and T .

m = n = 50 and k = 1 (Fig. 2a). We perturb each matrixB∗ using false
positive rate α∗ = 0.001 and false negative rate β∗ = 0.2 (Fig. 2b). That
is, if b∗p,c = 0, we set dp,c = 1 with probability α∗ = 0.001, otherwise
we set dp,c = 0. If b∗p,c = 1, we set dp,c = 0 with probability β∗ = 0.2,
otherwise we set dp,c = 1. Thus, we have 60 simulated instances with
varying loss rate λ ∈ {0.1, 0.2, 0.4}.

We compared SPhyR to SCITE (Jahn et al., 2016) and SiFit (Zafar
et al., 2017). While SCITE uses the infinite sites model and disallows
homoplasy, SiFit uses a finite sites model allowing for parallel evolution
and mutation loss. Our method SPhyR is based on the k-Dollo parsimony
model, and thus disallows parallel evolution and restricts the number of
losses of each character to at most k. We provided all three methods the
simulated false positive rateα∗ = 0.001 and false negative rateβ∗ = 0.2.
For SPhyR, we set the maximum number k of character losses to 1, the
number s of taxa clusters to 10, and the number t of distinct branches
to 35. We used default parameters and 100 restarts for each method.
Supplementary Section A.5 provides additional details.

Given the same input matrixD = [dp,c], each method infers an output
matrix B = [bp,c]. We compared each output matrix B to the simulated
matrixB∗ = [b∗p,c] as follows. A false positive (FP) is a 1-entry inB that
is a 0-entry in B∗. The false positive rate (FPR) is the fraction of false
positives among the 1-entries of B. Conversely, a false negative (FN) is
a 0-entry in B that is a 1-entry in B∗. The false negative rate (FNR) is
the fraction of false negatives among the 0-entries of B. We note that, by
construction, each matrixD has an expected FPRα = 0.001 and expected
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FNR β = 0.2—thus, a straw-man algorithm that leaves the input matrix
unperturbed, i.e. B = D, would achieve these rates. Moreover, note that
an FPR and FNR of 0 implies thatB = B∗. We find that all three methods
outperformed the straw-man algorithm, significantly reducing the fraction
of false positives with only a slight increase in the fraction of false negatives
(Fig. 4a-c). Among the three methods, SPhyR achieved the lowest FNR
while maintaining a low FPR (median FNR: 0.038; median FPR: 0.010)
compared to SCITE (FNR: 0.065; FPR: 0.009) and SiFit (FNR: 0.119;
FPR: 0.002). SiFit achieved the lowest FPR and the highest FNR.

To explore the effect of these differences in FPR and FNR, we
compared each output phylogenetic tree T to the simulated phylogenetic
tree T ∗. We used three different measures that consider pairs of character
states (Fig. 2e). First, the ancestral pair recall is given by |A(T ) ∩
A(T ∗)|/|A(T ∗)|, where the multi-set A(T ) is composed of ordered
pairs ((c, i), (d, j)) of character states that are introduced on distinct
edges of the same branch of T . Second, the incomparable pair recall
is defined as |I(T ) ∩ I(T ∗)|/|I(T ∗)|, where the multi-set I(T ) is
composed of unordered pairs {(c, i), (d, j)} of character states that are
introduced on edges from distinct branches of T . Third, the clustered pair
recall is defined as |C(T ) ∩ C(T ∗)|/|C(T ∗)|, where the multi-set C(T )

is composed of unordered pairs {(c, i), (d, j)} of character states that are
introduced on the same edge of T . If all three measures equal 1 then the
output tree T and the simulated tree T ∗ are identical (when restricted to
their internal nodes). We find that SiFit’s low FPR at the expense of the
FNR significantly reduced its ability to accurately recover the simulated
tree. In contrast, the more balanced FPR and FNR of SCITE and SPhyR
led to more accurate output trees. Moreover, SPhyR’s evolutionary model
and combinatorial coordinate-ascent algorithm, enabled our method to
more accurately recover the simulated trees than SCITE and SiFit in each
of the three recall measures (Fig. 4d-f), at a fraction of the run time
(Supplementary Fig. A8).

In Supplementary Section A.5, we show that SPhyR is robust to varying
α and β. In addition, we find that with k = 0 the output tree quality
decreased, whereas the quality remained the same withk = 2, highlighting
the importance of the k-Dollo parsimony model.

4.3 SPhyR reconstructs evolutionary history of a
metastatic colorectal cancer with larger data likelihood

We considered metastatic colorectal cancer patient CRC1 from (Leung
et al., 2017). The authors sequenced 178 cells from this patient using a
cancer gene panel composed of 1000 genes. Subsequent mutation calling
identified 16 single-nucleotide variants (SNVs). This yielded an 178×16

input matrix D with 191 missing ?-entries, 614 1-entries and 2043 0-
entries. Leung et al. (2017) ran SCITE on matrixD, and obtained a perfect
phylogeny tree TSCITE and matrix BSCITE with α = 1.52% and β =

7.89% (Supplementary Fig. A10). In a subsequent paper, Zafar et al.
(2017) ran their method SiFit on the same matrixDwith the sameα andβ,
and obtained phylogenetic tree TSiFit and matrixBSiFit (Supplementary
Fig. A11). We compared these two trees and two matrices to the tree and
matrix inferred by SPhyR using the sameα and β. In addition, we used the
same number s = 10 of taxa clusters as in the simulations, and number
t = 15 of character clusters. We varied the number k ∈ {0, 1} of losses.

Supplementary Fig. A9 shows the output matrices of each method and
is summarized in Table 1. We find that BSCITE has fewer edits from
D (278) and consequently larger data likelihood (-447.66) than BSiFit

(301 edits and likelihood -471.62). Inspection of the corresponding tree
TSiFit of BSiFit reveals that 15 SNVs were introduced more than once
and underwent parallel evolution (Supplementary Fig. A11), which is
uncommon in the evolution of SNVs in cancer. With k = 0, i.e. no loss of
mutation, SPhyR achieved similar likelihood as SCITE. By allowing each
character to be lost once, i.e. k = 1, SPhyR yielded matrix BSPhyR

with the same number of edits but a larger likelihood than BSCITE.
Supplementary Fig. A12 shows the corresponding tree TSPhyR. Unlike
TSiFit, the tree TSPhyR does not exhibit parallel evolution, which is by
definition of the k-Dollo parsimony model. In TSCITE, 24 cells formed a
separate clade (red leaves in Supplementary Fig. A10). These cells were
obtained from the liver metastasis by Leung et al. (2017). In addition to the
same 24 cells (red leaves in Supplementary Fig. A12), treeTSPhyR assigns
six additional cells to the metastatic clade (blue leaves in Supplementary
Fig. A12). SPhyR inferred that these six cells have undergone loss of
mutation. Five of the six cells (MD_1, MD_5, MD_6, MD_10 and
MD_20) were obtained by Leung et al. (2017) from the liver metastasis,
corroborating the metastatic clade inTSPhyR. SCITE was unable to assign
the original 24 metastatic cells and these five additional cells to the same
clade due to the infinite sites assumption; the five additional cells appeared
close to the root inTSCITE (blue leaves in Supplementary Fig. A10). Thus,
the k-Dollo parsimony model employed by SPhyR led to more accurate
reconstruction of the evolutionary history of this metastatic colorectal
cancer.

5 Discussion
We introduced SPhyR, a method for tumor phylogeny estimation from
single-cell sequencing data. Copy-number aberrations are ubiquitous in
solid tumors and affect large genomic regions. As such, homoplasy of
single-nucleotide variants in cancer is mainly due to mutation loss caused
by copy number aberrations. Based on this observation, SPhyR employs
the k-Dollo parsimony model, where a mutation may only be gained once
but lost k times. We studied the error-free case and derived a combinatorial
characterization of solutions as constrained integer matrix completions.
This characterization formed the basis for our integer linear program,
which we solved efficiently using column and cutting plane generation.
We introduced a coordinate-ascent approach for solving the real data case
with errors in the input matrix. On simulated data, we showed that SPhyR
outperformed existing methods, that are either based on the infinite sites
or the finite sites evolutionary model, in terms of solution quality and run
time. On real data, we showed that SPhyR provided a likelier explanation
of the evolutionary history of a metastatic colorectal cancer.

Our findings show that while there is a need for more realistic
evolutionary models in tumor phylogeny estimation beyond the infinite
sites model, evolutionary models that are too permissive, such as the finite
sites model, lead to incorrect inferences. By disallowing parallel evolution
but allowing for mutation loss, the k-Dollo parsimony model employed
by SPhyR strikes a balance between being realistic and yet, sufficiently
constrained.

There are a number of avenues for future research. From a theoretical
perspective, the hardness of the k-DP problem, where k ≥ 1, remains
open. It would be interesting to investigate whether the graph sandwich
approach used by Pe’er et al. (2004) for incomplete directed perfect
phylogeny problem can be extended to the k-DP problem. From a practical
perspective, inclusion of additional data sources and information might
yield additional constrains that improve phylogeny reconstruction. For
instance, for metastatic cancers the inclusion of a multi-state location
character might result in evolutionary scenarios that minimize migrations,
as described in (El-Kebir et al., 2018) for bulk DNA sequencing data.
Moreover, inclusion of copy-number information might allow one to
restrict the subset of characters that have undergone losses. Finally,
one could consider joint phylogeny estimation from bulk and single-cell
sequencing data of the same tumor.



i
i

“main” — 2018/7/11 — 12:38 — page 9 — #9 i
i

i
i

i
i

SPhyR 9

Table 1. SPhyR reconstructs a phylogenetic tree for patient CRC1 from (Leung et al., 2017) with larger data likelihood than existing methods. The input
matrix D = [dp,c] has m = 178 taxa (cells) and n = 16 characters (single-nucleotide variants). For each method, we show the data likelihood, the number of 1 → 0

changes, the number of 0 → 1 changes, the number of ? → 0 changes, the number of ? → 1 changes, the total number of changes, the number of losses, and the number of
times a character is introduced more than once (parallel evolution).

method log Pr(D | B,α, β) 1 → 0 0 → 1 ? → 0 ? → 1 # edits # losses # par. evo.

SCITE -447.66 33 54 142 49 278 0 0

SiFit -471.62 14 96 126 65 301 14 15

SPhyR (k = 0) -450.70 19 79 138 53 289 0 0
SPhyR (k = 1) -413.38 13 74 137 54 278 14 0
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